Some observations on the effects of iron on the leaf ultrastructure of Halimione portulacoides

1997 ◽  
Vol 151 (5) ◽  
pp. 581-589 ◽  
Author(s):  
F. Reboredo
Author(s):  
O. E. Bradfute ◽  
R. E. Whitmoyer ◽  
L. R. Nault

A pathogen transmitted by the eriophyid mite, Aceria tulipae, infects a number of Gramineae producing symptoms similar to wheat spot mosaic virus (1). An electron microscope study of leaf ultrastructure from systemically infected Zea mays, Hordeum vulgare, and Triticum aestivum showed the presence of ovoid, double membrane bodies (0.1 - 0.2 microns) in the cytoplasm of parenchyma, phloem and epidermis cells (Fig. 1 ).


Author(s):  
K. S. Zaychuk ◽  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic (WSpM), which frequently occurs with wheat streak mosaic virus was first reported in 1956 from Alberta. Singly isolated, WSpM causes chlorotic spots, chlorosis, stunting, and sometimes death of the wheat plants. The vector responsible for transmission is the eriophyid mite, Eriophyes tulipae Kiefer. The examination of leaf ultrastructure by electron microscopy has revealed double membrane bound bodies (DMBB’s) 0.1-0.2 μm in diameter. Dispersed fibrils within these bodies suggested the presence of nucleic acid. However, neither ribosomes characteristic of bacteria, mycoplasma and the psittacosis group of organisms nor an electron dense core characteristic of many viruses was commonly evident.In an attempt to determine if the DMBB’s contain nucleic acids, RNase A, DNase I, and lactoferrin protein were conjugated with 10 nm colloidal gold as previously described. Young root and leaf tissues from WSpM-affected wheat plants were fixed in glutaraldehyde, postfixed in osmium tetroxide,and embedded in Spurr’s resin.


2021 ◽  
Vol 11 (11) ◽  
pp. 4995
Author(s):  
Marco Custódio ◽  
Paulo Cartaxana ◽  
Sebastián Villasante ◽  
Ricardo Calado ◽  
Ana Isabel Lillebø

Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.


2004 ◽  
Vol 33 (4) ◽  
pp. 1369 ◽  
Author(s):  
M. J. Sánchez-Blanco ◽  
P. Rodríguez ◽  
E. Olmos ◽  
M. A. Morales ◽  
A. Torrecillas

1989 ◽  
Vol 29 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Joseph C.V. Vu ◽  
Leon H. Allen ◽  
George Bowes

2001 ◽  
Vol 44 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Maria das Graças Sajo ◽  
Silvia Rodrigues Machado

The leaf ultrastructure of five Xyris species were examined using scanning electron microscope (SEM), transmission electron microscope (TEM) and histochemical methods. All studied leaves show some features in epidermis and mesophyll, which were of considerable adaptative significance to drought stress. Such features included the occurrence of a pectic layer on the stomatal guard cells and the presence of a network of pectic compounds in the cuticle. Pectic compunds were also in abundance in lamellated walls of the mesophyll cells and on the inner surface of the sclerified cell walls of the vascular bundle sheaths. There were also specialized chlorenchymatous "peg cells" in the mesophyll and drops of phenolic compounds inside the epidermal cells.


Sign in / Sign up

Export Citation Format

Share Document