P1561 Reproducibility of ventricular tachycardia inducibility during repeated electrophysiological study in patients with arrhythmogenic right-ventricular cardiomyopathy

2003 ◽  
Vol 24 (5) ◽  
pp. 283
Author(s):  
M PAUL
2021 ◽  
Vol 8 ◽  
Author(s):  
Aleksandr A. Khudiakov ◽  
Daniil D. Panshin ◽  
Yulia V. Fomicheva ◽  
Anastasia A. Knyazeva ◽  
Ksenia A. Simonova ◽  
...  

Introduction: Pericardial fluid is enriched with biologically active molecules of cardiovascular origin including microRNAs. Investigation of the disease-specific extracellular microRNAs could shed light on the molecular processes underlying disease development. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease characterized by life-threatening arrhythmias and progressive heart failure development. The current data about the association between microRNAs and ARVC development are limited.Methods and Results: We performed small RNA sequence analysis of microRNAs of pericardial fluid samples obtained during transcutaneous epicardial access for ventricular tachycardia (VT) ablation of six patients with definite ARVC and three post-infarction VT patients. Disease-associated microRNAs of pericardial fluid were identified. Five microRNAs (hsa-miR-1-3p, hsa-miR-21-5p, hsa-miR-122-5p, hsa-miR-206, and hsa-miR-3679-5p) were found to be differentially expressed between patients with ARVC and patients with post-infarction VT. Enrichment analysis of differentially expressed microRNAs revealed their close linkage to cardiac diseases.Conclusion: Our data extend the knowledge of pericardial fluid microRNA composition and highlight five pericardial fluid microRNAs potentially linked to ARVC pathogenesis. Further studies are required to confirm the use of pericardial fluid RNA sequencing in differential diagnosis of ARVC.


Author(s):  
Perry Elliott ◽  
Alexandros Protonotarios

Patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) have arrhythmia-related symptoms or are identified during screening of an affected family. Heart failure symptoms occur late in the disease’s natural history. As strenuous exercise has been associated with disease acceleration and worsening of ventricular arrhythmias, lifestyle modification with restricted athletic activities is recommended upon disease diagnosis or even identification of mutation carrier status. An episode of an haemodynamically unstable, sustained ventricular tachycardia or ventricular fibrillation as well as severe systolic ventricular dysfunction constitute definitive indications for implantable cardioverter defibrillator (ICD) implantation, which should also be considered following tolerated sustained or non-sustained ventricular tachycardia episodes, syncope, or in the presence of moderate ventricular dysfunction. Antiarrhythmic medications are used as an adjunct to device therapy. Catheter ablation is recommended for incessant ventricular tachycardia or frequent appropriate ICD interventions despite maximal pharmacological therapy. Amiodarone alone or in combination with beta blockers is most effective for symptomatic ventricular arrhythmias. Beta blockers are considered for use in all patients with a definite diagnosis but evidence for their prognostic benefit is sparse. Heart failure symptoms are managed using standard protocols and heart transplantation is considered for severe ventricular dysfunction or much less commonly uncontrollable ventricular arrhythmias.


Circulation ◽  
2020 ◽  
Vol 141 (18) ◽  
pp. 1477-1493 ◽  
Author(s):  
Yihui Wang ◽  
Chunyan Li ◽  
Ling Shi ◽  
Xiuyu Chen ◽  
Chen Cui ◽  
...  

Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary heart disease characterized by fatty infiltration, life-threatening arrhythmias, and increased risk of sudden cardiac death. The guideline for management of ARVC in patients is to improve quality of life by reducing arrhythmic symptoms and to prevent sudden cardiac death. However, the mechanism underlying ARVC-associated cardiac arrhythmias remains poorly understood. Methods: Using protein mass spectrometry analyses, we identified that integrin β1 is downregulated in ARVC hearts without changes to Ca 2+ -handling proteins. As adult cardiomyocytes express only the β1D isoform, we generated a cardiac specific β1D knockout mouse model and performed functional imaging and biochemical analyses to determine the consequences of integrin β1D loss on function in the heart in vivo and in vitro. Results: Integrin β1D deficiency and RyR2 Ser-2030 hyperphosphorylation were detected by Western blotting in left ventricular tissues from patients with ARVC but not in patients with ischemic or hypertrophic cardiomyopathy. Using lipid bilayer patch clamp single channel recordings, we found that purified integrin β1D protein could stabilize RyR2 function by decreasing RyR2 open probability, mean open time, and increasing mean close time. Also, β1D knockout mice exhibited normal cardiac function and morphology but presented with catecholamine-sensitive polymorphic ventricular tachycardia, consistent with increased RyR2 Ser-2030 phosphorylation and aberrant Ca 2+ handling in β1D knockout cardiomyocytes. Mechanistically, we revealed that loss of DSP (desmoplakin) induces integrin β1D deficiency in ARVC mediated through an ERK1/2 (extracellular signal–regulated kinase 1 and 2)–fibronectin–ubiquitin/lysosome pathway. Conclusions: Our data suggest that integrin β1D deficiency represents a novel mechanism underlying the increased risk of ventricular arrhythmias in patients with ARVC.


Sign in / Sign up

Export Citation Format

Share Document