101 New variant prion protein in a Japanese family with Gerstmann-Sträussler syndrome : Clinicopathological , molecular genetic studies

1996 ◽  
Vol 17 (4) ◽  
pp. S25-S26
Author(s):  
H. Furukawa ◽  
H. Tashiro ◽  
Y. Tanaka ◽  
C. Yutani ◽  
T. Yamaguchi ◽  
...  
1995 ◽  
Vol 30 (2) ◽  
pp. 385-388 ◽  
Author(s):  
Hisako Furukawa ◽  
Tetsuyuki Kitamoto ◽  
Yutaka Tanaka ◽  
Jun Tateishi

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2431
Author(s):  
Natalia A. Shnayder ◽  
Marina M. Petrova ◽  
Tatiana E. Popova ◽  
Tatiana K. Davidova ◽  
Olga P. Bobrova ◽  
...  

Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.


The Lancet ◽  
1996 ◽  
Vol 348 (9019) ◽  
pp. 56 ◽  
Author(s):  
John Collinge ◽  
Jonathan Beck ◽  
Tracy Campbell ◽  
Kathy Estibeiro ◽  
Robert G Will

1998 ◽  
Vol 8 (4) ◽  
pp. 415-422 ◽  
Author(s):  
Brenda Winkel Shirley

AbstractFlavonoids are secondary metabolites that are present at high levels in most plant seeds and grains. These compounds appear to play vital roles in defence against pathogens and predators and contribute to physiological functions such as seed maturation and dormancy. At the same time, particular subclasses of flavonoids, such as the proanthocyanidins (condensed tannins), negatively impact the use of seeds and grains in animal feed and can add undesirable qualities to food products for human consumption. This article presents an overview of investigations into the physiological and agronomic aspects of seed and grain flavonoids as well as a review of molecular genetic studies, particularly in maize,Arabidopsisand soybean, where mutants deficient in flavonoid biosynthesis provide useful tools for stydying the metabolic machinery underlying the accumulation of these compounds in reproductive structures.


Sign in / Sign up

Export Citation Format

Share Document