scholarly journals Classification of certain inductive limit actions of compact groups on af algebras

2020 ◽  
pp. 2050128
Author(s):  
Qingyun Wang

Let [Formula: see text] be an AF algebra, [Formula: see text] be a compact group. We consider inductive limit actions of the form [Formula: see text], where [Formula: see text] is an action on the finite-dimensional C*-algebra [Formula: see text] which fixes each matrix summand. We give a complete classification up to conjugacy of such actions using twisted equivariant K-theory.

2004 ◽  
Vol 15 (09) ◽  
pp. 919-957 ◽  
Author(s):  
MARIUS DADARLAT

Let A, B be separable simple unital tracially AF C*-algebras. Assuming that A is exact and satisfies the Universal Coefficient Theorem (UCT) in KK-theory, we prove the existence, and uniqueness modulo approximately inner automorphisms, of nuclear *-homomorphisms from A to B with prescribed K-theory data. This implies the AF-embeddability of separable exact residually finite-dimensional C*-algebras satisfying the UCT and reproves Huaxin Lin's theorem on the classification of nuclear tracially AF C*-algebras.


Author(s):  
KONRAD AGUILAR

Given a unital inductive limit of C*-algebras for which each C*-algebra of the inductive sequence comes equipped with a Rieffel compact quantum metric, we produce sufficient conditions to build a compact quantum metric on the inductive limit from the quantum metrics on the inductive sequence by utilizing the completeness of the dual Gromov–Hausdorff propinquity of Latrémolière on compact quantum metric spaces. This allows us to place new quantum metrics on all unital approximately finite-dimensional (AF) algebras that extend our previous work with Latrémolière on unital AF algebras with faithful tracial state. As a consequence, we produce a continuous image of the entire Fell topology on the ideal space of any unital AF algebra in the dual Gromov–Hausdorff propinquity topology.


2011 ◽  
Vol 63 (2) ◽  
pp. 381-412 ◽  
Author(s):  
Kui Ji ◽  
Chunlan Jiang

Abstract Let A be an AI algebra; that is, A is the C*-algebra inductive limit of a sequencewhere are [0, 1], kn, and [n, i] are positive integers. Suppose that A has the ideal property: each closed two-sided ideal of A is generated by the projections inside the ideal, as a closed two-sided ideal. In this article, we give a complete classification of AI algebras with the ideal property.


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


2019 ◽  
pp. 1-26
Author(s):  
Bo Cui ◽  
Chunlan Jiang ◽  
Liangqing Li

An ATAI (or ATAF, respectively) algebra, introduced in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (or in [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], respectively) is an inductive limit [Formula: see text], where each [Formula: see text] is a simple separable nuclear TAI (or TAF) C*-algebra with UCT property. In [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404], the second author classified all ATAI algebras by an invariant consisting orderd total [Formula: see text]-theory and tracial state spaces of cut down algebras under an extra restriction that all element in [Formula: see text] are torsion. In this paper, we remove this restriction, and obtained the classification for all ATAI algebras with the Hausdorffized algebraic [Formula: see text]-group as an addition to the invariant used in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404]. The theorem is proved by reducing the class to the classification theorem of [Formula: see text] algebras with ideal property which is done in [G. Gong, C. Jiang and L. Li, A classification of inductive limit C*-algebras with ideal property, preprint (2016), arXiv:1607.07681]. Our theorem generalizes the main theorem of [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (see Corollary 4.3).


2017 ◽  
Vol 28 (03) ◽  
pp. 1750022 ◽  
Author(s):  
Albert Jeu-Liang Sheu

Taking a groupoid C*-algebra approach to the study of the quantum complex projective spaces [Formula: see text] constructed from the multipullback quantum spheres introduced by Hajac and collaborators, we analyze the structure of the C*-algebra [Formula: see text] realized as a concrete groupoid C*-algebra, and find its [Formula: see text]-groups. Furthermore, after a complete classification of the unitary equivalence classes of projections or equivalently the isomorphism classes of finitely generated projective modules over the C*-algebra [Formula: see text], we identify those quantum principal [Formula: see text]-bundles introduced by Hajac and collaborators among the projections classified.


2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


2016 ◽  
Vol 13 (03) ◽  
pp. 1650024
Author(s):  
Giorgio Trentinaglia ◽  
Chenchang Zhu

Motivated by the study of the interrelation between functorial and algebraic quantum field theory (AQFT), we point out that on any locally trivial bundle of compact groups, representations up to homotopy are enough to separate points by means of the associated representations in cohomology. Furthermore, we observe that the derived representation category of any compact group is equivalent to the category of ordinary (finite-dimensional) representations of the group.


1967 ◽  
Vol 7 (4) ◽  
pp. 433-454 ◽  
Author(s):  
Neil W. Rickert

In this paper a number of questions about locally compact groups are studied. The structure of finite dimensional connected locally compact groups is investigated, and a fairly simple representation of such groups is obtained. Using this it is proved that finite dimensional arcwise connected locally compact groups are Lie groups, and that in general arcwise connected locally compact groups are locally connected. Semi-simple locally compact groups are then investigated, and it is shown that under suitable restrictions these satisfy many of the properties of semi-simple Lie groups. For example, a factor group of a semi-simple locally compact group is semi-simple. A result of Zassenhaus, Auslander and Wang is reformulated, and in this new formulation it is shown to be true under more general conditions. This fact is used in the study of (C)-groups in the sense of K. Iwasawa.


Author(s):  
Mohamed Bouali

Let [Formula: see text] be the infinite semigroup, inductive limit of the increasing sequence of the semigroups [Formula: see text], where [Formula: see text] is the unitary group of matrices and [Formula: see text] is the semigroup of positive hermitian matrices. The main purpose of this work is twofold. First, we give a complete classification of spherical functions defined on [Formula: see text], by following a general approach introduced by Olshanski and Vershik.10 Second, we prove an integral representation for functions of positive-type analog to the Bochner–Godement theorem, and a Lévy–Khinchin formula for functions of negative type defined on [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document