Soil physics helps ants dig tunnels

2021 ◽  
Vol 251 (3349) ◽  
pp. 7
Author(s):  
Matthew Sparkes
Keyword(s):  
2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


1956 ◽  
Vol 20 (2) ◽  
pp. 296-296
Author(s):  
Don Kirkham
Keyword(s):  

1964 ◽  
Vol 28 (6) ◽  
pp. viii-viii
Author(s):  
A. P. Mazurak
Keyword(s):  

Soil Science ◽  
1941 ◽  
Vol 51 (2) ◽  
pp. 171 ◽  
Author(s):  
L. D. BAVER
Keyword(s):  

1997 ◽  
Vol 54 (spe) ◽  
pp. 22-26 ◽  
Author(s):  
J. W. Hopmans ◽  
V. Clausnitzer ◽  
K.I. Kosugi ◽  
D.R. Nielsen ◽  
F. Somma

The following treatise is a summary of some of the ongoing research activities in the soil physics program at the University of California in Davis. Each of the four listed areas win be presented at the Workshop on special topics on soil physics and crop modeling in Piracicaba at the University of Sao Paulo. We limited ourselves to a general overview of each area, but will present a more thorough discussion with examples at the Workshop.


2016 ◽  
Vol 5 (1-2) ◽  
pp. 32-37
Author(s):  
András Makó ◽  
József Szabó ◽  
Zsófia Bakacsi ◽  
Sándor Koós ◽  
Gabriella Hauk ◽  
...  

In this research we present the first results how can be used laser diffraction measurement in soil physics practice. The main goals are understanding differences of particle size distribution (PSD) measurments, developing converting methods of PSD data of different determinations. In order to realization of this survey a representative soil database of Hungarian soil types was built up. We compared PSDs of 157 soil samples measured with sieve-pipette method (SPM) and laser diffractometer technique (Malvern Mastersizer 2000) (LDM). Soil textural classes were also determined using the USDA texture triangle. We used the clay/silt fraction boundary values (clay < 0.0066 mm; silt: 0.0066 - 0.05 mm) introduced for the LDM data in order to take them comparable to PSD data determined by the SPM: We got higher similarities of clay and silt fractions of the modified size boundary values. For the used dataset correspondence of texture classes derived from SPM and LDM PSD data, however is not higher than 60%.


2015 ◽  
Vol 64 (2) ◽  
pp. 339-360 ◽  
Author(s):  
Ya. Pachepsky ◽  
K. Rajkai ◽  
B. Tóth

Parameters governing the retention and movement of water and chemicals in soils are notorious for the difficulties and high labor costs involved in measuring them. Often, there is a need to resort to estimating these parameters from other, more readily available data, using pedotransfer relationships. This work is a mini-review that focuses on trends in pedotransfer development across the World, and considers trends regarding data that are in demand, data we have, and methods to build pedotransfer relationships. Recent hot topics are addressed, including estimating the spatial variability of water contents and soil hydraulic properties, which is needed in sensitivity analysis, evaluation of the model performance, multimodel simulations, data assimilation from soil sensor networks and upscaling using Monte Carlo simulations. Ensembles of pedotransfer functions and temporal stability derived from “big data” as a source of soil parameter variability are also described. Estimating parameter correlation is advocated as the pathway to the improvement of synthetic datasets. Upscaling of pedotransfer relationships is demonstrated for saturated hydraulic conductivity. Pedotransfer at coarse scales requires a different type of input variables as compared with fine scales. Accuracy, reliability, and utility have to be estimated independently. Persistent knowledge gaps in pedotransfer development are outlined, which are related to regional soil degradation, seasonal changes in pedotransfer inputs and outputs, spatial correlations in soil hydraulic properties, and overland flow parameter estimation. Pedotransfer research is an integral part of addressing grand challenges of the twenty-first century, including carbon stock assessments and forecasts, climate change and related hydrological weather extreme event predictions, and deciphering and managing ecosystem services. Overall, pedotransfer functions currently serve as an essential instrument in the science-based toolbox for diagnostics, monitoring, predictions, and management of the changing Earth and soil as a life-supporting Earth system.


Sign in / Sign up

Export Citation Format

Share Document