Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites

2001 ◽  
Vol 61 (5) ◽  
pp. 771-786 ◽  
Author(s):  
Z.Y. Ma ◽  
S.C. Tjong
2021 ◽  
Vol 1059 (1) ◽  
pp. 012021
Author(s):  
A. Saravanakumar ◽  
D. Ravikanth ◽  
L. Rajeshkumar ◽  
D. Balaji ◽  
M. Ramesh

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3114
Author(s):  
Bartosz Hekner ◽  
Jerzy Myalski ◽  
Patryk Wrześniowski ◽  
Tomasz Maciąg

In this paper, the applicability of aluminium matrix composites to high-temperature working conditions (not exceeding the Al melting point) was evaluated. The behaviour of Al-Ti-C composites at elevated temperatures was described based on microstructural and phase composition observations for composites heated at temperatures of 540 and 600 °C over differing time intervals from 2 to 72 h. The materials investigated were aluminium matrix composites (AMC) reinforced with a spatial carbon (C) structure covered by a titanium (Ti) layer. This layer protected the carbon surface against contact with the aluminium during processing, protection which was maintained for the material’s lifetime and ensured the required phase compositions of Al4C3 phase limitation and AlTi3 phase creation. It was also proved that heat treatment influenced not only phase compositions but also the microstructure of the material, and, as a consequence, the properties of the composite.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Xinghua Ji ◽  
Cheng Zhang ◽  
Shufeng Li

SiCp reinforced aluminium matrix composites (AMCs), which are widely used in the aerospace, automotive, and electronic packaging fields along with others, are usually prepared by ex situ techniques. However, interfacial contamination and poor wettability of the ex situ techniques make further improvement in their comprehensive performance difficult. In this paper, SiCp reinforced AMCs with theoretical volume fractions of 15, 20, and 30% are prepared by powder metallurgy and in situ reaction via an Al-Si-C system. Moreover, a combined method of external addition and an in situ method is used to investigate the synergistic effect of ex situ and in situ SiCp on AMCs. SiC particles can be formed by an indirect reaction: 4Al + 3C → Al4C3 and Al4C3 + 3Si → 3SiC + 4Al. This reaction is mainly through the diffusion of Si, in which Si diffuses around Al4C3 and then reacts with Al4C3 to form SiCp. The in situ SiC particles have a smooth boundary, and the particle size is approximately 1–3 μm. A core-shell structure having good bonding with an aluminium matrix was generated, which consists of an ex situ SiC core and an in situ SiC shell with a thickness of 1–5 μm. The yield strength and ultimate tensile strength of in situ SiCp reinforced AMCs can be significantly increased with a constant ductility by adding 5% ex situ SiCp for Al-28Si-7C. The graphite particle size has a significant effect on the properties of the alloy. A criterion to determine whether Al4C3 is a complete reaction is achieved, and the forming mechanism of the core-shell structure is analysed.


2000 ◽  
Vol 16 (7-8) ◽  
pp. 830-836 ◽  
Author(s):  
M. Jacquesson ◽  
M.H. Vidal­Sétif ◽  
R. Valle ◽  
N. Godin ◽  
A. Girard ◽  
...  

2011 ◽  
Vol 52 (5) ◽  
pp. 939-942 ◽  
Author(s):  
Moonhee Lee ◽  
Yongbum Choi ◽  
Kenjiro Sugio ◽  
Kazuhiro Matsugi ◽  
Gen Sasaki

Sign in / Sign up

Export Citation Format

Share Document