Thermal stresses and thermal expansion coefficients ofn-layered fiber-reinforced composites

1997 ◽  
Vol 57 (2) ◽  
pp. 249-260 ◽  
Author(s):  
A. Agbossou ◽  
J. Pastor
2018 ◽  
Vol 53 (11) ◽  
pp. 1425-1436
Author(s):  
PC Upadhyay ◽  
JP Dwivedi ◽  
VP Singh

Coefficients of thermal expansion of some uniaxially fiber-reinforced composites have been evaluated using three-phase unit-cell model. Results have been compared with the values predicted by two other models based on composite cylinders assembly (CCA), and also with some earlier reported experimental values. An extension of the two-phase unit-cell model has also been presented for the evaluation of thermal expansion coefficients of three-phase composites. The formulation has been used to evaluate the overall coefficients of thermal expansion of AS-graphite/epoxy system with a low modulus coating on the fibers. The results have been compared with the results obtained from the Sutcu's recursive concentric cylinders model for composites containing coated fibers. From the comparison of results of the unit-cell models (both, two-phase and three-phase) with the results obtained from some other models available in the literature, it is concluded that the overall thermal properties of fiber-reinforced composites evaluated by the unit-cell model can be used as effectively as by any other model.


1985 ◽  
Vol 52 (4) ◽  
pp. 806-810 ◽  
Author(s):  
Y. Takao ◽  
M. Taya

A formulation to compute the effective thermal expansion coefficients (αc) of an anisotropic short fiber-reinforced composite and the thermal stress (σ) induced in and around the fiber is developed. The formulation is based on the Eshelby’s equivalent inclusion method. Main emphasis is placed on short Carbon fiber/Aluminum. The thermal stress due to a uniform temperature rise ΔT is computed at points just outside the fiber. The effects of various parameters on αc and σ are also investigated.


Author(s):  
Chensong Dong

The coefficients of thermal expansion (CTEs) of fiber reinforced composites play an important role in the design and analysis of composite structures. Since the thermal expansion coefficients of polymer matrix materials are typically much higher than those of fibers, and the fiber often exhibits anisotropic thermal and mechanical properties, the stress induced in the composite due to temperature change is very complex. Large discrepancies exist among the analytical models for the transverse CTE of unidirectional composites. Hence, it is problematic when choosing a suitable model. With the development of computer technologies, finite element analysis (FEA) proved its effectiveness in calculating the effective CTE of composites. In this study, the transverse CTEs of unidirectional carbon fiber composites were calculated by finite element analysis using a representative unit cell. The analytical micromechanical models from literature were compared against the FEA data. It shows that Hashin’s concentric cylinder model is the best. However, it is inconvenient for practical applications due to the amount of computation. In this study, based on the FEA data, an engineering model for predicting the transverse CTE of unidirectional composites was developed by regression analysis. This model was validated against the FEA and experimental data. It shows that the developed model provides a simple and accurate approach to calculate the transverse CTE of unidirectional composites.


Sign in / Sign up

Export Citation Format

Share Document