Modelling and Experimental Analysis of Multi-Coating Effect on Thermal Expansion and Thermal Stresses of Polymer Fiber-Reinforced Composites

1999 ◽  
Vol 33 (15) ◽  
pp. 1410-1432 ◽  
Author(s):  
Amen Agbossou ◽  
Anne Bergeret
2018 ◽  
Vol 53 (11) ◽  
pp. 1425-1436
Author(s):  
PC Upadhyay ◽  
JP Dwivedi ◽  
VP Singh

Coefficients of thermal expansion of some uniaxially fiber-reinforced composites have been evaluated using three-phase unit-cell model. Results have been compared with the values predicted by two other models based on composite cylinders assembly (CCA), and also with some earlier reported experimental values. An extension of the two-phase unit-cell model has also been presented for the evaluation of thermal expansion coefficients of three-phase composites. The formulation has been used to evaluate the overall coefficients of thermal expansion of AS-graphite/epoxy system with a low modulus coating on the fibers. The results have been compared with the results obtained from the Sutcu's recursive concentric cylinders model for composites containing coated fibers. From the comparison of results of the unit-cell models (both, two-phase and three-phase) with the results obtained from some other models available in the literature, it is concluded that the overall thermal properties of fiber-reinforced composites evaluated by the unit-cell model can be used as effectively as by any other model.


Author(s):  
Chensong Dong

The coefficients of thermal expansion (CTEs) of fiber reinforced composites play an important role in the design and analysis of composite structures. Since the thermal expansion coefficients of polymer matrix materials are typically much higher than those of fibers, and the fiber often exhibits anisotropic thermal and mechanical properties, the stress induced in the composite due to temperature change is very complex. Large discrepancies exist among the analytical models for the transverse CTE of unidirectional composites. Hence, it is problematic when choosing a suitable model. With the development of computer technologies, finite element analysis (FEA) proved its effectiveness in calculating the effective CTE of composites. In this study, the transverse CTEs of unidirectional carbon fiber composites were calculated by finite element analysis using a representative unit cell. The analytical micromechanical models from literature were compared against the FEA data. It shows that Hashin’s concentric cylinder model is the best. However, it is inconvenient for practical applications due to the amount of computation. In this study, based on the FEA data, an engineering model for predicting the transverse CTE of unidirectional composites was developed by regression analysis. This model was validated against the FEA and experimental data. It shows that the developed model provides a simple and accurate approach to calculate the transverse CTE of unidirectional composites.


Author(s):  
M. M. Shokrieh ◽  
A. R. Ghanei Mohammadi

In this paper, a new finite element model has been introduced with the aim of efficient investigation of residual thermal stresses in fiber-reinforced composites, in which the inhomogeneous interphase is considered. For the inhomogeneous interphase modeling, four different kinds of material properties variation of the interphase (power, reciprocal, cubic and exponential variations) with the radial coordinate have been used. A mono fiber circular unit cell is considered using a finite element (FE) method. Extending the mono fiber model, FE models with different arrays of fibers have been created to investigate the effects of neighboring fibers on the results. In order to assure the convergence of results, a convergence analysis has been carried out for each of the models. To verify the finite element model, the FE results are compared with theoretical results available in the literature. In this paper, three different types of RVE configurations, circular, square and hexagonal are modeled and the effects of each type of fiber packing are studied. Performing an extensive study, the appropriate boundary conditions for RVEs are presented. The boundary conditions presented in this research are proved to be able to model the overall behavior efficiently.


2012 ◽  
Vol 531-532 ◽  
pp. 153-158
Author(s):  
Fateeha Nisar Siddiqui ◽  
Nada Saleh ◽  
Ayesha Rahat ◽  
Asif Israr ◽  
Atiq Ur Rehman

Carbon Fiber Reinforced Composites are presently used in satellites structure for better performance during extreme thermal cycling space environment. These materials display unexpected failure because the satellite periodically goes into and out of the earth shadow region on orbit, leading to a change in its surface temperature. As the coefficient of thermal expansion of carbon fibers is an order of magnitude lower than that of the polymer matrix, repeated thermal stresses are generated in the composites under the alternative temperature field, resulting in damage to the materials and a decrease in mechanical properties. The main objective of this study is to develop an analytical model to predict the damage produce in the composites subjected to extreme thermal loading. These thermal loading also causes the material to release strain energy. The results are presented in terms of strain produced during thermal cycling and also in the process of delamination.


Sign in / Sign up

Export Citation Format

Share Document