representative unit cell
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
pp. 2160009
Author(s):  
Andrey Nasedkin ◽  
Mohamed Elsayed Nassar

This paper presents a numerical homogenization analysis of a porous piezoelectric composite with a partially metalized pore surface. The metal layers can be added to the pore surfaces to improve the mechanical and electromechanical properties of ordinary porous piezocomposites. Physically, constructing that composite with completely metalized pore surfaces is a challenging process, and imperfect metallization is more expected. Here, we investigate the effects of possible incomplete metallization of pore surfaces on the composite’s equivalent properties. We applied the effective moduli theory, which was developed for the piezoelectric medium based on the Hill–Mandel principle, and the finite element method to compute the effective moduli of the considered composites. Using specific algorithms and programs in the ANSYS APDL programming language, we constructed the representative unit cell element models and performed various computational experiments. Due to the presence of metal inclusion, we found that the dielectric and piezoelectric properties of the considered composites differ dramatically from the corresponding properties of the ordinary porous piezocomposites. The results of this work showed that piezocomposites with partially metallized pore surfaces can have a higher anisotropy, compared to the pure piezoceramic matrix, due to the defects in metal coatings.


2021 ◽  
Vol 263 (1) ◽  
pp. 5301-5309
Author(s):  
Luca Alimonti ◽  
Abderrazak Mejdi ◽  
Andrea Parrinello

Statistical Energy Analysis (SEA) often relies on simplified analytical models to compute the parameters required to build the power balance equations of a coupled vibro-acoustic system. However, the vibro-acoustic of modern structural components, such as thick sandwich composites, ribbed panels, isogrids and metamaterials, is often too complex to be amenable to analytical developments without introducing further approximations. To overcome this limitation, a more general numerical approach is considered. It was shown in previous publications that, under the assumption that the structure is made of repetitions of a representative unit cell, a detailed Finite Element (FE) model of the unit cell can be used within a general and accurate numerical SEA framework. In this work, such framework is extended to account for structural-acoustic coupling. Resonant as well as non-resonant acoustic and structural paths are formulated. The effect of any acoustic treatment applied to coupling areas is considered by means of a Generalized Transfer Matrix (TM) approach. Moreover, the formulation employs a definition of pressure loads based on the wavenumber-frequency spectrum, hence allowing for general sources to be fully represented without simplifications. Validations cases are presented to show the effectiveness and generality of the approach.


2021 ◽  
pp. 1-28
Author(s):  
Vanessa Cool ◽  
Lucas Van Belle ◽  
Claus Claeys ◽  
Elke Deckers ◽  
Wim Desmet

Abstract Recently, the potential of metamaterials and phononic crystals to cope with conflicting requirements of obtaining lightweight structures with desirable noise and vibration properties has been demonstrated. These, often periodic, structures are commonly studied based on their representative unit cell of which the vibro-acoustic performance is examined by means of their wave propagation, visualized by dispersion curves. Typically, the unit cell is discretized using a finite element technique to capture the possibly complex geometry. This leads to a high computation cost for the dispersion curve calculation which can be strongly reduced by applying modal based model order reduction techniques such as the (generalized) Bloch mode synthesis. In this paper, the choice of the unit cell is shown to have an impact on the dispersion curve calculation time. Moreover, the efficiency of (generalized) Bloch mode synthesis strongly depends on the unit cell choice. The highest reduction in computation time is accomplished when the number of boundary degrees-of-freedom is limited.


2021 ◽  
pp. 108128652110243
Author(s):  
Volodymyr I Kushch ◽  
Igor Sevostianov

The paper focuses on the quantitative characterization of the microstructure of a two-dimensional heterogeneous solid with circular inhomogeneities that may vary from perfectly periodic arrangement to completely random one. This characterization is linked to the calculation of the effective conductivity of the material. The partially disordered system of disks is generated in the framework of the representative unit cell model using Metropolis algorithm. The orientation order metrics are taken as the structural parameters providing a quantitative measure of disorder, and their variation caused by the gradual disordering of the periodic system is assessed. The effective conductivity of the heterogeneous solid with partially disordered microstructure is evaluated by the multipole expansion method. It is shown that effective conductivity cannot be fully characterized by only one orientation order metric, and the required additional ones are identified.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 770
Author(s):  
Chen Pan ◽  
Yafeng Han ◽  
Jiping Lu

Percutaneous Coronary Intervention (PCI) is currently the most conventional and effective method for clinically treating cardiovascular diseases such as atherosclerosis. Stent implantation, as one of the ways of PCI in the treatment of coronary artery diseases, has become a hot spot in scientific research with more and more patients suffering from cardiovascular diseases. However, vascular stent implanted into vessels of patients often causes complications such as In-Stent Restenosis (ISR). The vascular stent is one of the sophisticated medical devices, a reasonable structure of stent can effectively reduce the complications. In this paper, we introduce the evolution, performance evaluation standards, delivery and deployment, and manufacturing methods of vascular stents. Based on a large number of literature pieces, this paper focuses on designing structures of vascular stents in terms of “bridge (or link)” type, representative volume unit (RVE)/representative unit cell (RUC), and patient-specific stent. Finally, this paper gives an outlook on the future development of designing vascular stents.


2021 ◽  
Vol 883 ◽  
pp. 49-56
Author(s):  
Benjamin Gröger ◽  
Andreas Hornig ◽  
Arne Hoog ◽  
Maik Gude

Joining and local forming processes for fibre-reinforced thermoplastics (FRTP) like hole-forming or variations of the clinching process require an in-depth understanding of the process induced effects on meso-scale. For numerical modelling with a geometrical description of a woven fabric, adequate material models for a representative unit cell are identified. Model calibration is achieved employing a mesoscopic finite-element-approach using the embedded element method based on tensile tests of the consolidated organo-sheets and a phenomenological evaluation of photomicrographs. The model takes temperature dependent stiffness and fibre tension failure into account.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Jun-Jun Zhai ◽  
Xiang-Xia Kong ◽  
Lu-Chen Wang

A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) representative unit cell model, and the macroscopic solid model with homogeneous property. Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace transformation and Prony series fitting technology, the character of the stress relaxation behaviors at three scales subject to variation in temperature is investigated, and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus (TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature, structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of 3D braided four-directional composites were studied.


2020 ◽  
pp. 108128652097761
Author(s):  
CQ Ru

A simplified metaelastic model is presented to study long-wavelength dynamics of random composites filled with coated rigid spheres under the condition that the characteristic wavelength of the displacement field is much larger than the average distance between adjacent coated rigid spheres. The model is characterized by a simple differential relation between the displacement field of the composite and the displacement field of the mass center of a representative unit cell. The validity and accuracy of the model are demonstrated by comparing its predicted bandgap frequencies with known numerical and experimental data. The efficiency and merits of the model are demonstrated by applying it to study vibration isolation of coated rigid sphere-filled composite rods and (periodic or non-periodic) free vibration caused by initial displacement or velocity disturbance of the embedded rigid spheres inside an otherwise static composite rod. The proposed model could offer a simple method to study various long-wavelength metaelastic dynamic problems of coated rigid sphere-filled random composites.


2020 ◽  
pp. 105678952094498
Author(s):  
F Praud ◽  
G Chatzigeorgiou ◽  
F Meraghni

In this work, a multi-scale model established from the concept of periodic homogenization is utilized to predict the cyclic and time-dependent response of thermoplastic-based woven composites. The macroscopic behaviour of the composite is determined from finite element simulations of the representative unit cell of the periodic microstructure, where the local non-linear constitutive laws of the components are directly integrated, namely, the matrix and the yarns. The thermoplastic matrix is described by a phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. For the yarns, a hybrid micromechanical–phenomenological constitutive model accounting for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network is utilized. The capabilities of the overall multi-scale model are validated by comparing the numerical predictions with experimental data. Further illustrative examples are also provided, where the composite undergoes time-dependent deformations under uni-axial and non-proportional multi-axial loading paths. The multi-scale model is also employed to analyze the influence of the local deformation processes on the macroscopic response of the composite.


Sign in / Sign up

Export Citation Format

Share Document