Multi-proxy records showing significant Holocene environmental variability: the inner N. Iceland shelf (Húnaflói)

2003 ◽  
Vol 22 (2-4) ◽  
pp. 175-193 ◽  
Author(s):  
J Andrews
2021 ◽  
Author(s):  
Arne Ulfers ◽  
Christian Zeeden ◽  
Silke Voigt ◽  
Thomas Wonik

<p>Lake Ohrid is located on the Balkan Peninsula between Albania and North Macedonia. It is considered Europe’s oldest lake and thus is a valuable archive for studies that focus on the change of local (hydro-)climate during the last 1.36 million years (e.g., Francke et al. 2016; Wagner et al. 2019). During an International Continental Scientific Drilling Program (ICDP) campaign in 2013, geophysical downhole logging by the Leibniz Institute for Applied Geophysics acquired continuous datasets of physical properties. Additionally, 2100 m of sediment core was obtained from different sites, the deepest with a length of 570 m (Wagner et al. 2014).</p><p>Investigations of half-precession (HP) cycles (~9,000 – 12,000 years) have been given only a small role or have been completely neglected in previous cyclostratographic studies. In this study we focus on HP signals in Lake Ohrid and investigate the temporal variability of this signal over the last one million of years. Next to a connection of HP cycles to interglacials, we see a more pronounced correlation of the HP signal to natural gamma radiation logs in the younger part of the record.</p><p>We relate the results from Lake Ohrid to a variety of proxy records from the European mainland and marine sediment cores from the Atlantic and the Mediterranean. Certain patterns, such as the increased visibility of the HP signal in interglacials, occur in most records, but differences, like variations in the amplitude modulation of the filtered HP signal, need to be investiagted in more detail. Nevertheless, the HP cycles are contained in all of the investigated sites, although the records are influenced by different climatic systems. This illustrates that HP signals cannot be connected to a certain climatic system, but can occur simultaneously in records with different proxy signal origins.</p><p>HP cycles are a relevant part of natural climate variability - also in Europe - and allow a more detailed investiagtion of sedimentary systems.</p><p> </p><p>References:</p><p>Francke, A., Wagner, B., Just, J., Leicher, N., Gromig, R., Baumgarten, H., … & Giacco, B. (2016). Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present, Biogeosciences , 13, 1179–1196.</p><p>Wagner, B., Wilke, T., Krastel, S., Zanchetta, G., Sulpizio, R., Reicherter, K., …. & Vogel, H. (2014). The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid, Sci. Drill. , 17, 19-29.</p><p>Wagner, B., Vogel, H., Francke, A., Friedrich, T., Donders, T., Lacey, J. H., … & Zhang, X. . (2019). Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years, Nature , 573(7773), 256-260.</p>


2020 ◽  
Vol 651 ◽  
pp. 125-143
Author(s):  
TD Auth ◽  
T Arula ◽  
ED Houde ◽  
RJ Woodland

The bay anchovy Anchoa mitchilli is the most abundant fish in Chesapeake Bay (USA) and is a vital link between plankton and piscivores within the trophic structure of this large estuarine ecosystem. Baywide distributions and abundances of bay anchovy eggs and larvae, and larval growth, were analyzed in a 5 yr program to evaluate temporal and spatial variability based on research surveys in the 1995-1999 spawning seasons. Effects of environmental variability and abundance of zooplankton that serve as prey for larval bay anchovy were analyzed. In the years of these surveys, 97.6% of eggs and 98.8% of larvae occurred in the polyhaline lower bay. Median egg and larval abundances differed more than 10-fold for surveys conducted in the 5 yr and were highest in the lower bay. Within years, median larval abundance (ind. m-2) in the lower bay was generally 1-2 orders of magnitude higher than upper-bay abundance. Salinity, temperature, and dissolved oxygen explained 12% of the spatial and temporal variability in egg abundances and accounted for 27% of the variability in larval abundances. The mean, baywide growth rate for larvae over the 5 yr period was 0.75 ± 0.01 mm d-1, and was best explained by zooplankton concentration and feeding incidence. Among years, mean growth rates ranged from 0.68 (in 1999) to 0.81 (in 1998) mm d-1 and were fastest in the upper bay. We identified environmental factors, especially salinity, that contributed to broadscale variability in egg and larval production.


2020 ◽  
Vol 650 ◽  
pp. 269-287
Author(s):  
WC Thaxton ◽  
JC Taylor ◽  
RG Asch

As the effects of climate change become more pronounced, variation in the direction and magnitude of shifts in species occurrence in space and time may disrupt interspecific interactions in ecological communities. In this study, we examined how the fall and winter ichthyoplankton community in the Newport River Estuary located inshore of Pamlico Sound in the southeastern United States has responded to environmental variability over the last 27 yr. We relate the timing of estuarine ingress of 10 larval fish species to changes in sea surface temperature (SST), the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, wind strength and phenology, and tidal height. We also examined whether any species exhibited trends in ingress phenology over the last 3 decades. Species varied in the magnitude of their responses to all of the environmental variables studied, but most shared a common direction of change. SST and northerly wind strength had the largest impact on estuarine ingress phenology, with most species ingressing earlier during warm years and delaying ingress during years with strong northerly winds. As SST warms in the coming decades, the average date of ingress of some species (Atlantic croaker Micropogonias undulatus, summer flounder Paralichthys dentatus, pinfish Lagodon rhomboides) is projected to advance on the order of weeks to months, assuming temperatures do not exceed a threshold at which species can no longer respond through changes in phenology. These shifts in ingress could affect larval survival and growth since environmental conditions in the estuarine and pelagic nursery habitats of fishes also vary seasonally.


Sign in / Sign up

Export Citation Format

Share Document