Neuropeptide Y suppresses epileptiform activity in rat frontal cortex and hippocampus in vitro via different NPY receptor subtypes

1999 ◽  
Vol 268 (3) ◽  
pp. 115-118 ◽  
Author(s):  
Maria Bijak
2001 ◽  
Vol 280 (4) ◽  
pp. R1061-R1068 ◽  
Author(s):  
Eric S. Corp ◽  
Beatrice Gréco ◽  
J. Bradley Powers ◽  
Carrie L. Marín Bivens ◽  
George N. Wade

Central injections of neuropeptide Y (NPY) increase food intake in Syrian hamsters; however, the effect of NPY on sexual behavior in hamsters is not known nor are the receptor subtypes involved in feeding and sexual behaviors. We demonstrate that NPY inhibits lordosis duration in a dose-related fashion after lateral ventricular injection in ovariectomized, steroid-primed Syrian hamsters. Under the same conditions, we compared the effect of two receptor-differentiating agonists derived from peptide YY (PYY), PYY-(3–36) and [Leu31,Pro34]PYY, on lordosis duration and food intake. PYY-(3–36) produced a 91% reduction in lordosis duration at 0.24 nmol. [Leu31,Pro34]PYY was less potent, producing a reduction in lordosis duration (66%) only at 2.4 nmol. These results suggest NPY effects on estrous behavior are principally mediated by Y2 receptors. PYY-(3–36) and [Leu31,Pro34]PYY stimulated comparable dose-related increases in total food intake (2 h), suggesting Y5 receptors are involved in feeding. The significance of different NPY receptor subtypes controlling estrous and feeding behavior is highlighted by results on expression of Fos immunoreactivity (Fos-IR) elicited by either PYY-(3–36) or [Leu31,Pro34]PYY at a dose of each that differentiated between the two behaviors. Some differences were seen in the distribution of Fos-IR produced by the two peptides. Overall, however, the patterns of expression were similar. Our behavioral and anatomic results suggest that NPY-containing pathways controlling estrous and feeding behavior innervate similar nuclei, with the divergence in pathways controlling the separate behaviors characterized by linkage to different NPY receptor subtypes.


2005 ◽  
Vol 124 (1-3) ◽  
pp. 163-172 ◽  
Author(s):  
Mirjana Dimitrijević ◽  
Stanislava Stanojević ◽  
Vesna Vujić ◽  
Annette Beck-Sickinger ◽  
Stephan von Hörsten

1990 ◽  
Vol 259 (1) ◽  
pp. H174-H180 ◽  
Author(s):  
N. A. Scott ◽  
M. C. Michel ◽  
J. H. Boublik ◽  
J. E. Rivier ◽  
S. Motomura ◽  
...  

We have studied the hemodynamic effects of neuropeptide Y (NPY) and its COOH-terminal fragment NPY-(18–36) in conscious rats. Intra-arterial injection of NPY rapidly elevated systemic vascular resistance (SVR), which remained high for greater than 30 min. Cardiac output (CO) decreased, and it remained low for greater than 30 min. Accordingly, blood pressure rose only transiently and returned to base-line values within 5 min. The reduction of CO could be attributed to a decreased stroke volume with an only marginal reduction of heart rate. Thus a direct cardiodepressive effect of NPY rather than baroreflex activation appears to be the major cause of the reduced CO. In vitro experiments excluded the possibility that NPY has direct negative inotropic effects and suggest that its cardiodepressive action is caused by coronary vasoconstriction or by presynaptic inhibition of norepinephrine release. Intra-arterial injections of NPY-(18-36) caused different hemodynamic effects. NPY-(18–36) decreased CO in a manner similar to that seen with NPY but initially did not elevate SVR, resulting overall in a reduced blood pressure. Only later, when blood pressure was reduced, was an elevation of SVR observed, which could be associated with increased plasma levels of catecholamines, angiotensin II, vasopressin, and NPY. Thus NPY-(18–36) mimics the cardiac effects of NPY but does not elicit its vascular effects. As NPY-(18–36) discriminates between NPY receptor subtypes in vitro, we conclude that the cardiac and vascular effects of NPY are mediated by distinct receptor subtypes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jenny Wickham ◽  
Marco Ledri ◽  
Johan Bengzon ◽  
Bo Jespersen ◽  
Lars H. Pinborg ◽  
...  

AbstractIn epilepsy patients, drug-resistant seizures often originate in one of the temporal lobes. In selected cases, when certain requirements are met, this area is surgically resected for therapeutic reasons. We kept the resected tissue slices alive in vitro for 48 h to create a platform for testing a novel treatment strategy based on neuropeptide Y (NPY) against drug-resistant epilepsy. We demonstrate that NPY exerts a significant inhibitory effect on epileptiform activity, recorded with whole-cell patch-clamp, in human hippocampal dentate gyrus. Application of NPY reduced overall number of paroxysmal depolarising shifts and action potentials. This effect was mediated by Y2 receptors, since application of selective Y2-receptor antagonist blocked the effect of NPY. This proof-of-concept finding is an important translational milestone for validating NPY-based gene therapy for targeting focal drug-resistant epilepsies, and increasing the prospects for positive outcome in potential clinical trials.


2000 ◽  
Vol 78 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Jacques Duhault ◽  
Michèle Boulanger ◽  
Susana Chamorro ◽  
Jean A Boutin ◽  
Odile Della Zuana ◽  
...  

Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.Key words: obesity, weight reduction, food intake, neuropeptide Y, rodents.


Sign in / Sign up

Export Citation Format

Share Document