Distinction of NPY receptors in vitro and in vivo. II. Differential effects of NPY and NPY-(18-36)

1990 ◽  
Vol 259 (1) ◽  
pp. H174-H180 ◽  
Author(s):  
N. A. Scott ◽  
M. C. Michel ◽  
J. H. Boublik ◽  
J. E. Rivier ◽  
S. Motomura ◽  
...  

We have studied the hemodynamic effects of neuropeptide Y (NPY) and its COOH-terminal fragment NPY-(18–36) in conscious rats. Intra-arterial injection of NPY rapidly elevated systemic vascular resistance (SVR), which remained high for greater than 30 min. Cardiac output (CO) decreased, and it remained low for greater than 30 min. Accordingly, blood pressure rose only transiently and returned to base-line values within 5 min. The reduction of CO could be attributed to a decreased stroke volume with an only marginal reduction of heart rate. Thus a direct cardiodepressive effect of NPY rather than baroreflex activation appears to be the major cause of the reduced CO. In vitro experiments excluded the possibility that NPY has direct negative inotropic effects and suggest that its cardiodepressive action is caused by coronary vasoconstriction or by presynaptic inhibition of norepinephrine release. Intra-arterial injections of NPY-(18-36) caused different hemodynamic effects. NPY-(18–36) decreased CO in a manner similar to that seen with NPY but initially did not elevate SVR, resulting overall in a reduced blood pressure. Only later, when blood pressure was reduced, was an elevation of SVR observed, which could be associated with increased plasma levels of catecholamines, angiotensin II, vasopressin, and NPY. Thus NPY-(18–36) mimics the cardiac effects of NPY but does not elicit its vascular effects. As NPY-(18–36) discriminates between NPY receptor subtypes in vitro, we conclude that the cardiac and vascular effects of NPY are mediated by distinct receptor subtypes.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 191-191
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 191 A series of salicylamides, fully synthetic cationic foldamers designed to disrupt the binding of the pentasaccharide unit of heparin to antithrombin III, were found to be potent neutralizers of the activity of unfractionated heparin (UFH) and low molecular weight heparins (LMWHs). A compound from this series, PMX-60056, is currently in human clinical trials for neutralization of UFH and LMWHs. PMX-60056 potently neutralizes UFH and LMWHs but is not as efficacious versus fondaparinux (FPX). The goal of the present research was to 1) identify back-up compounds to optimize activity against the LMWHs and FPX and 2) mitigate the hemodynamic effects commonly associated with protamine and observed clinically with PMX-60056 in the absence of heparin. Compounds were first tested for their ability to neutralize the anticoagulant activity of enoxaparin (ENX), tinzaparin or FPX in an in vitro amidolytic assay for factor Xa activity. While only minor improvements were observed in the neutralization of ENX and tinzaparin, compounds were identified which had 6 to 40 fold increase in activity against FPX (EC50s of 0.09 – 0.58 uM) in comparison to PMX-60056 (EC50 3.64 uM). Activated partial thromboplastin time (aPTT) assays demonstrated that these compounds maintained activity against heparin in a plasma based clotting assay. Rotation thromboelastometry (ROTEM) was used to show that these compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were tested in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). Lead back-up compounds were not cytotoxic (or hemolytic) at >100 fold concentrations over their EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Five compounds were selected for further studies based on their in vitro profiles. The in vivo efficacy of these compounds was evaluated in a rat coagulation model for neutralization of ENX (2 mg/kg). Three minutes following IV dosing with ENX, either saline, protamine or one of the five salicylamide test compounds was administered. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. Three of the five salicylamides (PMX640, PMX686 and PMX747) were more efficacious than protamine; with PMX640 and PMX686 neutralizing 91 – 100% and PMX747 neutralizing 78–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. In a second in vivo model, PMX747 and PMX686 (2 mg/kg) completely neutralized the prolonged bleeding times in a rat tail bleeding model caused by treatment with 2 mg/kg ENX. Significantly, with protamine at a 5 mg/kg dosage, only partial restoration was obtained. Protamine routinely causes a transient decrease in blood pressure upon dosing, and hemodynamic effects have also been observed with PMX-60056 in human subjects in the absence of heparin. To address this issue, structural features that have successfully reduced hemodynamic liabilities in other cationic compounds were incorporated into the design of the back-up salicylamides. The effect of compounds on blood pressure and heart rate was measured via arterial catheters in rats following IV administration of protamine, PMX-60056, or test agents. As expected, in rats treated with a low dose of UFH (50 u/kg) and high dosages of antagonist, both protamine and PMX-60056 displayed transient or prolonged blood pressure reductions at 8 and 16 mg/kg, respectively. However, the lead back-up salicylamides, PMX640, PMX686 and PMX747 had little to no effect on blood pressure at these same dosages. In conclusion, we have discovered compounds in the salicylamide series that have greater efficacy versus LMWHs and that have significantly reduced hemodynamic liabilities in rats as compared to protamine. Furthermore, these compounds potently neutralize FPX activity in vitro; exceeding the activity of protamine and our clinical lead salicylamide, PMX-60056, by up to 40 fold. Thus we have been able to optimize the salicylamide series, identifying compounds that offer the potential to greatly improve upon the current clinical heparin antagonist, protamine, in respect to both activity against LMWHs and side effect profile. Disclosures: Scott: PolyMedix Inc.: Employment, Equity Ownership. Costanzo:PolyMedix Inc.: Employment, Equity Ownership. Freeman:PolyMedix Inc.: Employment, Equity Ownership. Kavash:PolyMedix Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.


1994 ◽  
Vol 267 (3) ◽  
pp. R767-R772 ◽  
Author(s):  
F. J. Ruiz ◽  
M. G. Salom ◽  
A. C. Ingles ◽  
T. Quesada ◽  
E. Vicente ◽  
...  

Recently, in vivo and in vitro studies have implicated nitric oxide as a mediator of the vascular effects of angiotensin-converting enzyme inhibitors (ACEIs). In the present study we hypothesized that N-acetyl-L-cysteine (NAC), by increasing the availability of reduced sulfhydryl groups, would enhance the antihypertensive response to the ACEIs captopril and enalaprilat by a mechanism dependent on nitric oxide. The experiments were performed on instrumented, indomethacin-pretreated, awake spontaneously hypertensive rats (SHRs). Thirty minutes after a bolus of captopril (10 mg/kg iv) was administered, blood pressure decreased from 167 +/- 5 to 147 +/- 6 mmHg (n = 8). The pretreatment with the donor of thiol groups NAC (300 mg/kg iv) potentiated the depressor response to captopril because blood pressure decreased from 172 +/- 3 to 139 +/- 4 mmHg (n = 6). At the dose of 60 micrograms/kg iv, the ACEI enalaprilat did not acutely modify the blood pressure of SHRs (from 172 +/- 5 to 167 +/- 4 mmHg; n = 6). However, when the SHRs were pretreated with NAC, the same dose of enalaprilat significantly reduced blood pressure from 176 +/- 5 to 151 +/- 5 mmHg (n = 6). This potentiation of the depressor response to ACEIs, due to NAC, was not observed when SHRs were pretreated with the nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 50 micrograms.kg-1.min-1 iv). The results of this study suggest that NAC, a donor of sulfhydryl groups, potentiates the antihypertensive response to captopril and enalaprilat in SHR by a nitric oxide-dependent mechanism.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1096-1096
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 1096 Structural studies of the binding interaction between the negatively charged heparin pentasaccharide binding site and antithrombin III suggested that an amphiphilic structure resembling features designed into compounds prepared for antimicrobial activity might also provide an efficient design basis for the development of heparin antagonists. A key design element of our antimicrobial approach at PolyMedix involves compounds exhibiting polycationic arrays which are appended to a diverse set of rigid backbones. A broad screening of the antimicrobial compound library in an enoxaparin (ENX) anti-factor Xa assay, coupled with subsequent secondary testing, identified compounds with potent and broad neutralizing activity. A lead compound (PMX-60056) was identified in one structural series, the salicylamides, and this compound has successfully completed Phase 1 human clinical studies. Recently, a new series of antagonists identified in the initial screen, the arylamides, was investigated for heparin neutralizing activities. Compounds were first tested for their ability to neutralize the anticoagulant activity of ENX, tinzaparin (TZP) or fondaparinux (FPX) in an in vitro amidolytic assay for factor Xa activity. Activated partial thromboplastin time (aPTT) assays demonstrated that the compounds were also active against unfractionated heparin (UFH) in a plasma-based clotting assay. The lead compound PMX150 was comparable to or better than PMX-60056 versus all anticoagulants tested (EC50s: UFH 0.6 uM, ENX 0.1 uM, TZP 0.1 uM, FPX 0.7 uM). Early compounds have shown an interesting structure activity relationship (SAR) which has identified specific regions of the molecule that are important for activity. Additionally, rotation thromboelastometry (ROTEM) shows that compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were evaluated in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). PMX150 was not cytotoxic (or hemolytic) at concentrations 180 fold greater than the EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Furthermore, the SAR has identified synthetic strategies that should further improve this safety margin. The in vivo efficacy of PMX150 was evaluated in a rat coagulation model using ENX (2 mg/kg) administered by IV injection followed 3 minutes later by saline, protamine or PMX150. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. PMX150 was more efficacious than protamine; neutralizing 89–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. The in vivo assays concur with the in vitro studies, showing that compounds have been identified with high efficacy versus low molecular weight heparin (LMWH). Protamine, the heparin antagonist currently used in the clinic, routinely causes a transient decrease in blood pressure upon dosing. Hemodynamic effects with PMX-60056 have also been observed in human subjects in the absence of heparin. As PMX150 represents a new chemical series, investigations into potential adverse hemodynamic effects were performed. Blood pressure and heart rate were measured via arterial catheters in rats administered protamine or PMX150 by a 10 minute IV infusion. As expected, protamine displayed transient and prolonged blood pressure reductions at 8 and 16 mg/kg dosages, respectively. However, PMX150 had little to no effect on blood pressure at 8 mg/kg and only a minor transient reduction at 16 mg/kg. In conclusion, we have identified a new series of fully synthetic small molecule antagonists that display potent in vitro activity against UFH, the LMWHs, and fondaparinux. The lead compound in this series, PMX150 is able to neutralize ENX in vivo with more efficacy than protamine and, furthermore, has an improved hemodynamic profile with respect to protamine. Disclosures: Scott: PolyMedix, Inc.: Employment, Equity Ownership. Costanzo:PolyMedix, Inc.: Employment, Equity Ownership. Freeman:PolyMedix, Inc.: Employment, Equity Ownership. Kavash:PolyMedix, Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.


1974 ◽  
Vol 52 (3) ◽  
pp. 496-499 ◽  
Author(s):  
Glenn B. Axelrod ◽  
April A. Whitbeck ◽  
Jules Cohen

The capacities of D- and L-thyroxine to induce cardiac hypertrophy have been studied in rats as a function of the extent of the circulatory changes produced by the two isomers. D-Thyroxine had no effect on blood pressure, heart rate, or cardiac output, but significantly increased heart mass. L-Thyroxine had a small effect on mean blood pressure, a larger effect on heart rate, and caused a large increase in cardiac output. The closest parallels were between effects on heart rate and on heart growth. In companion experiments, D- and L-thyroxine were shown to be equipotent in stimulating atrial protein synthesis in vitro. The growth-promoting effects of both D- and L-thyroxine, therefore, seem largely direct and independent of the large increase in flow work produced by administration of the L-isomer in vivo.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


1986 ◽  
Vol 61 (1) ◽  
pp. 185-191 ◽  
Author(s):  
C. A. Hales ◽  
R. D. Brandstetter ◽  
C. F. Neely ◽  
M. B. Peterson ◽  
D. Kong ◽  
...  

Acute pulmonary and systemic vasomotor changes induced by endotoxin in dogs have been related, at least in part, to the production of eicosanoids such as the vasoconstrictor thromboxane and the vasodilator prostacyclin. Steroids in high doses, in vitro, inhibit activation of phospholipase A2 and prevent fatty acid release from cell membranes to enter the arachidonic acid cascade. We, therefore, administered methylprednisolone (40 mg/kg) to dogs to see if eicosanoid production and the ensuing vasomotor changes could be prevented after administration of 150 micrograms/kg of endotoxin. The stable metabolites of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) were measured by radioimmunoassay. Methylprednisolone by itself did not alter circulating eicosanoids but when given 2.5 h before endotoxin not only failed to inhibit endotoxin-induced eicosanoid production but actually resulted in higher circulating levels of 6-keto-PGF1 alpha (P less than 0.05) compared with animals receiving endotoxin alone. Indomethacin prevented the steroid-enhanced concentrations of 6-keto-PGF1 alpha after endotoxin and prevented the greater fall (P less than 0.05) in systemic blood pressure and systemic vascular resistance with steroid plus endotoxin than occurred with endotoxin alone. Administration of methylprednisolone immediately before endotoxin resulted in enhanced levels (P less than 0.05) of both TxB2 and 6-keto-PGF1 alpha but with a fall in systemic blood pressure and vascular resistance similar to the animals pretreated by 2.5 h. In contrast to the early steroid group in which all of the hypotensive effect was due to eicosanoids, in the latter group steroids had an additional nonspecific effect. Thus, in vivo, high-dose steroids did not prevent endotoxin-induced increases in eicosanoids but actually increased circulating levels of TxB2 and 6-keto-PGF1 alpha with a physiological effect favoring vasodilation.


CNS Spectrums ◽  
1998 ◽  
Vol 3 (10) ◽  
pp. 17-38 ◽  
Author(s):  
Franco Borsini

AbstractMyriad difficulties exist in analyzing the pharmacology of the serotonin 1A (5-HT1A) receptor. The receptor may demonstrate a different activity depending on the tissue or species used for analysis, the agent used, laboratory conditions, and differences between in vitro and in vivo effects of compounds. Affinity for 5-HT receptors also varies widely, presenting difficulties in drawing definitive conclusions on affinity values for various compounds. At least two possibilities exist to explain the diversity of pharmacology of 5-HT receptors. First, it is possible that different 5-HT1A receptor subtypes exist. Second, the 5-HT1A receptors may play a far more complex role than previously believed.


Genetics ◽  
1982 ◽  
Vol 100 (2) ◽  
pp. 259-278
Author(s):  
Hideo Tsuji

ABSTRACT Sister chromatid exchanges (SCEs) under in vivo and in vitro conditions were examined in ganglion cells of third-instar larvae of Drosophila melanogaster (Oregon-R). In the in vivo experiment, third-instar larvae were fed on synthetic media containing 5-bromo-2′-deoxyuridine (BrdUrd). After two cell cycles, ganglia were dissected and treated with colchicine. In the in vitro experiment, the ganglia were also incubated in media containing BrdUrd for two cell cycles, and treated with colchicine. SCEs were scored in metaphase stained with Hoechst 33258 plus Giemsa. The frequencies of SCEs stayed constant in the range of 25-150 vg/ml and 0.25-2.5 vg/ml of BrdUrd in vivo and in vitro, respectively. SCEs gradually increased at higher concentrations, strongly suggesting that at least a fraction of the detected SCEs are spontaneous. The constant levels of SCE frequency were estimated, on the average, at 0.103 per cell per two cell cycles for females and 0.101 for males in vivo and at 0.096 for females and 0.091 for males in vitro. No difference was found in the SCE frequency between sexes at any of the BrdUrd concentrations. The analysis for the distribution of SCEs within chromosomes revealed an extraordinarily high proportion of the SCEs at the junctions between euchromatin and heterochromatin; the remaining SCEs were preferentially localized in the euchromatic regions of the chromosomes and in the heterochromatic Y chromosome. These results were largely inconsistent with those of Gatti et al. (1979).


Sign in / Sign up

Export Citation Format

Share Document