Immune responses against excreted/secreted antigens of Toxoplasma gondii tachyzoites in the murine model

2003 ◽  
Vol 113 (2) ◽  
pp. 123-134 ◽  
Author(s):  
Ahmad Daryani ◽  
Ahmad Zavaran Hosseini ◽  
Abdolhossein Dalimi
Vaccine ◽  
2021 ◽  
Vol 39 (9) ◽  
pp. 1452-1462
Author(s):  
Nawamin Pinpathomrat ◽  
Naomi Bull ◽  
Janet Pasricha ◽  
Rachel Harrington-Kandt ◽  
Helen McShane ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Cong ◽  
Min Zhang ◽  
Qingli Zhang ◽  
Jing Gong ◽  
Haizi Cong ◽  
...  

Toxoplasma gondiiis a protozoan parasite capable of infecting humans and animals. Surface antigen glycoproteins, SAG2C, -2D, -2X, and -2Y, are expressed on the surface of bradyzoites. These antigens have been shown to protect bradyzoites against immune responses during chronic infections. We studied structures of SAG2C, -2D, -2X, and -2Y proteins using bioinformatics methods. The protein sequence alignment was performed by T-Coffee method. Secondary structural and functional domains were predicted using software PSIPRED v3.0 and SMART software, and 3D models of proteins were constructed and compared using the I-TASSER server, VMD, and SWISS-spdbv. Our results showed that SAG2C, -2D, -2X, and -2Y are highly homologous proteins. They share the same conserved peptides and HLA-I restricted epitopes. The similarity in structure and domains indicated putative common functions that might stimulate similar immune response in hosts. The conserved peptides and HLA-restricted epitopes could provide important insights on vaccine study and the diagnosis of this disease.


2021 ◽  
Vol 9 (1) ◽  
pp. 11-16
Author(s):  
AR Awan ◽  
OL Tulp ◽  
HJ Field

Equine herpes virus (EHV-1) causes respiratory infections in equine, and results in abortion, paresis, neonatal death, and retinopathy and the virus may become latent following initial infection. Virus entry is via the respiratory route, and the virus replicates in the host in ciliated and non-ciliated epithelial cells of the respiratory tract and in Type 1 and Type 2 pneumocytes in the lung parenchyma. After viral replication in the respiratory system, the virus can become disseminated to other parts of body via viraemic cells. The virus also can cross the placenta which leads to abortion of live or dead fetuses without premonitory signs. Infected horses show transient immunity after natural or experimental infection and immune responses to EHV-1, but the immunoprotective status begins to decline after a few months of active infection. Due to the transient immune response, recovered horses are not immunoprotected and thus are prone to subsequent re-infection. Immunity is not long lived after experimental or natural infection, and as a result the development of an effective vaccine has remained a challenge. In this study viraemic cells were studied in a murine EHV-1 infection model. Mice were infected intranasally and viraemic cells were studied on days three and five which occurs during the peak of the infection. The results of this study may help to identify the nature of viraemic cells and their role in the transient immune response to infection. Buffy coat cells and lungs were removed and stained with a fluorescent antibody test for EHV-1 antigen, and lung specimens were subjected to transmission electron microscopy. Both techniques confirmed the presence of viraemic cells in lung tissues. These viraemic cells were further stained for EHV-1 antigen, and for CD4 or CD8 biomarkers and results are discussed re: pathogenesis of EHV-1 infection, identification of viraemic cells in a murine model and possible link of viraemia to transient immune responses in EHV-1 infection, which demonstrate the validity of this murine model for the investigation of the cytopathologic mechanism and sequelae of EHV manifestation in this model.


2020 ◽  
Vol 88 (4) ◽  
Author(s):  
Rachel S. Coombs ◽  
Matthew L. Blank ◽  
Elizabeth D. English ◽  
Yaw Adomako-Ankomah ◽  
Ifeanyi-Chukwu Samuel Urama ◽  
...  

ABSTRACT Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. “Immediate” IFN-γ and IL-12p40 production was not detected in MyD88−/− mice. However, unlike IL-12p40−/− and IFN-γ−/− mice, MyD88−/− mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88−/− mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Sign in / Sign up

Export Citation Format

Share Document