Rivastigmine antagonizes deficits in prepulse inhibition induced by selective immunolesioning of cholinergic neurons in nucleus basalis magnocellularis

Neuroscience ◽  
2002 ◽  
Vol 114 (1) ◽  
pp. 91-98 ◽  
Author(s):  
M Ballmaier ◽  
F Casamenti ◽  
C Scali ◽  
R Mazzoncini ◽  
M Zoli ◽  
...  
1986 ◽  
Vol 64 (3) ◽  
pp. 376-382 ◽  
Author(s):  
Richard J. Beninger ◽  
B. A. Wirsching ◽  
Khem Jhamandas ◽  
Roland J. Boegman ◽  
Sherif R. El-Defrawy

Many data suggest that the brain's cholinergic neurons participate in the control of memory and it has been suggested that cholinergic systems are involved differentially in working and reference memory. To test this hypothesis the effects on memory of unilateral injections of the neurotoxins, quinolinic acid or kainic acid into the cortically projecting cholinergic cells of the nucleus basalis magnocellularis (nbm) were evaluated. In experiment 1, quinolinate-injected (n = 7) and sham-operated (n = 7) rats were tested in a T-maze alternation task that requires working memory. Lesion rats performed significantly more poorly than shams and subsequent biochemical assays of cortical choline acetyltransferase (CAT) activity revealed significant reductions in the lesion rats. In experiment 2, kainate-injected (n = 9) and sham-operated (n = 8) rats were trained in an eight-arm radial maze with only four arms baited. Lesion rats made significantly more working memory errors (entries into baited arms from which the food had already been collected) than reference memory errors (entries into never baited arms). CAT assays showed that the lesion led to a decrease in cortical CAT with no significant change in hippocampal CAT. The results of these studies support the hypothesis that cholinergic neurons of the basocortical system may be differentially involved in working and reference memory.


1994 ◽  
Vol 72 (8) ◽  
pp. 893-898 ◽  
Author(s):  
J. C. Szerb ◽  
K. Clow ◽  
D. D. Rasmusson

The role of muscarinic transmission in the activation of cholinergic neurons ascending to the neocortex from the nucleus basalis magnocellularis (NBM) was investigated. The release of acetylcholine (ACh) from the neocortex of urethane-anesthetized rats was measured using microdialysis, and a second microdialysis probe was inserted into the NBM to apply drugs to the NBM and to measure ACh release from this area. Cholinergic neurons in the NBM were activated synaptically by stimulating the pedunculopontine tegmentum (PPT). Systemically administered scopolamine greatly increased the PPT stimulation evoked cortical release of ACh when the cortical probe was perfused with the cholinesterase inhibitor neostigmine. PPT stimulation evoked release was also high when the cortical probe was perfused with atropine plus neostigmine, but it was not increased any further by systemic scopolamine or by scopolamine perfused through the NBM probe. When neostigmine was perfused through the NBM probe, PPT stimulation evoked cortical ACh release was halved, but the release was restored when the NBM solution also contained scopolamine. The resting release of ACh within the NBM was increased by local neostigmine, but evoked release in the NBM was large only in the presence of local scopolamine. Both of these increases were blocked by perfusion of the NBM with tetrodotoxin. These results suggest that muscarinic transmission within the NBM does not control the activation of cholinergic neurons under physiological conditions, when the diffusion of ACh is limited by its hydrolysis. However, when ACh is allowed to diffuse to a wider area, it may inhibit the release of an excitatory transmitter, probably glutamate, via presynaptic muscarinic receptors.Key words: acetylcholine release, nucleus basalis magnocellularis, pedunculopontine tegmentum, presynaptic muscarinic receptors, microdialysis.


Sign in / Sign up

Export Citation Format

Share Document