Detection and quantification of cocoa butter equivalents in chocolate model systems: analysis of triglyceride profiles by high resolution GC

1999 ◽  
Vol 65 (1) ◽  
pp. 111-116 ◽  
Author(s):  
C. Simoneau ◽  
P. Hannaert ◽  
E. Anklam
2004 ◽  
Vol 87 (5) ◽  
pp. 1153-1163 ◽  
Author(s):  
Manuela Buchgraber ◽  
Chiara Senaldi ◽  
Franz Ulberth ◽  
Elke Anklam

Abstract The development and in-house testing of a method for the detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate is described. A database consisting of the triacylglycerol profile of 74 genuine cocoa butter and 75 cocoa butter equivalent samples obtained by high-resolution capillary gas liquid chromatography was created, using a certified cocoa butter reference material (IRMM-801) for calibration purposes. Based on these data, a large number of cocoa butter/cocoa butter equivalent mixtures were arithmetically simulated. By subjecting the data set to various statistical tools, reliable models for both detection (univariate regression model) and quantification (multivariate model) were elaborated. Validation data sets consisting of a large number of samples (n = 4050 for detection, n = 1050 for quantification) were used to test the models. Excluding pure illipé fat samples from the data set, the detection limit was determined between 1 and 3% foreign fat in cocoa butter. Recalculated for a chocolate with a fat content of 30%, these figures are equal to 0.3–0.9% cocoa butter equivalent. For quantification, the average error for prediction was estimated to be 1.1% cocoa butter equivalent in cocoa butter, without prior knowledge of the materials used in the blend corresponding to 0.3% in chocolate (fat content 30%). The advantage of the approach is that by using IRMM-801 for calibration, the established mathematical decision rules can be transferred to every testing laboratory.


2004 ◽  
Vol 87 (5) ◽  
pp. 1164-1172 ◽  
Author(s):  
Manuela Buchgraber ◽  
Franz Ulberth ◽  
Elke Anklam ◽  
H Bernaert ◽  
B Cleenewerck ◽  
...  

Abstract A European interlaboratory study was conducted to validate an analytical procedure for the detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate. In principle, the fat obtained from plain chocolate according to the Soxhlet principle is separated by high-resolution capillary gas chromatography into triacylglycerol fractions according to their acyl-C-numbers, and within a given number, also according to unsaturation. The presence of cocoa butter equivalents is detected by linear regression analysis applied to the relative proportions of the 3 main triacylglycerol fractions of the fat analyzed. The amount of the cocoa butter equivalent admixture is estimated by partial least-squares regression analysis applied to the relative proportions of the 5 main triacylglycerols. Cocoa butter equivalent admixtures were detected down to a level of 2% related to the fat phase, corresponding to 0.6% in chocolate (assumed fat content of chocolate, 30%), without false-positive or -negative results. By using a quantification model based on partial least-squares regression analysis, the predicted cocoa butter equivalent amounts were in close agreement with the actual values. The applied model performed well at the level of the statutory limit of 5% cocoa butter equivalent addition to chocolate with a prediction error of 0.6%, assuming a chocolate fat content of 30%.


2011 ◽  
Vol 23 (No. 1) ◽  
pp. 27-35 ◽  
Author(s):  
I. Bohačenko ◽  
Z. Kopicová ◽  
J. Pinkrová

Chocolate samples (22 in total, including 11 samples of milk chocolate) were bought from retail store in Prague and tested for their CBEs contents in relation to the declaration of CBE addition on the product labels. The modified method of Padley and Timms was employed for determining selected triglycerides (C50, C52 and C54). The presence of CBEs in chocolate was evaluated using the following relationship: %C50 < 44.095 – (0.737 × %C54). The content of CBE in chocolate was determined using the method of Young, modified by the replacement of the original graphical procedure with the numerical processing of the results. 19 samples i.e. 90% of the total, satisfied the requirements of Directive 2000/36/EC. In view that no official methods for CBE detection and quantification in chocolate have been published up to now and older methods were used in this work, the results published here should be considered as indicative and satisfying the requirements for screening only.      


Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 29-36
Author(s):  
Alexander Vereshchagin ◽  
Irina Reznichenko ◽  
Nikolay Bychin

The article concerns the research specificity of model systems such as cocoa butter – palm olein, cocoa butter – sucrose and cocoa butter – glucose syrup by the differential scanning calorimetry (DSC) method. The researchers run experiments in the temperature range from –100 to –50°C at a heating rate of 10 °C/min. In the cacao butter – palm olein system an eutectic occurs with a palm olein content of 30.0 % indicating the limited solubility of palm olein in cocoa butter. In the cocoa butter – sucrose system, cocoa butter crystallizes as in the α-form (10,0– 30,0; 60.0–90.0 % MK), and as a mixture of α-and β-forms of MK (40.0; 50,0; 70,0 and 80.0 %). Sucrose stabilizes low-temperature polymorphic modifications of cocoa butter. In the cocoa butter – glucose syrup system, temperature of samples melting is 21-22 °C. This composition is promising for use as a filling of confectionery products and glazes production. In this regard, a man can use glucose syrup only in the candy cases production. The role of surfactants used for the formation and stabilization of cocoa butter polymorphs and increasing the thermal stability of the shock-lad without the introduction of palm stearin requires separate consideration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


Sign in / Sign up

Export Citation Format

Share Document