The influence of faulting on host-rock permeability, fluid flow and ore genesis of gold deposits: a theoretical 2D numerical model

2003 ◽  
Vol 78-79 ◽  
pp. 279-284 ◽  
Author(s):  
Y. Zhang ◽  
B.E. Hobbs ◽  
A. Ord ◽  
A. Barnicoat ◽  
C. Zhao ◽  
...  
2019 ◽  
Vol 26 (3) ◽  
pp. 418-433 ◽  
Author(s):  
Andy P. Cooke ◽  
Quentin J. Fisher ◽  
Emma A. H. Michie ◽  
Graham Yielding

The inherent heterogeneity of carbonate rocks suggests that carbonate-hosted fault zones are also likely to be heterogeneous. Coupled with a lack of host–fault petrophysical relationships, this makes the hydraulic behaviour of carbonate-hosted fault zones difficult to predict. Here we investigate the link between host rock and fault rock porosity, permeability and texture, by presenting data from series of host rock, damage zone and fault rock samples from normally faulted, shallowly buried limestones from Malta. Core plug X-ray tomography indicates that texturally heterogeneous host rocks lead to greater variability in the porosity and permeability of fault rocks. Fault rocks derived from moderate- to high-porosity (>20%) formations experience permeability reductions of up to six orders of magnitude relative to the host; >30% of these fault rocks could act as baffles or barriers to fluid flow over production timescales. Fault rocks derived from lower-porosity (<20%) algal packstones have permeabilities that are lower than their hosts by up to three orders of magnitude, which is unlikely to impact fluid flow on production timescales. The variability of fault rock permeability is controlled by a number of factors, including the initial host rock texture and porosity, the magnitude of strain localization, and the extent of post-deformation diagenetic alteration. Fault displacement has no obvious control over fault rock permeability. The results enable better predictions of fault rock permeability in similar lithotypes and tectonic regimes. This may enable predictions of across-fault fluid flow potential when combined with data on fault zone architecture.


Author(s):  
M. Benaouicha ◽  
S. Guillou ◽  
A. Santa Cruz ◽  
H. Trigui

The study deals with a 3D Fluid-Structure Interaction (FSI) numerical model of a rectangular cantilevered flexible hydrofoil subjected to a turbulent fluid flow regime. The structural response and dynamic deformations are studied by analyzing the oscillations frequencies and amplitudes, under a hydrodynamics loads. The obtained numerical results are confronted with experimental ones, for validation. The numerical model is performed in the same geometric, physical and material conditions as the experimental set-up carried out in a hydrodynamic tunnel. A polyacetal (POM) flexible hydrofoil NACA0015 with an angle of attack of 8° is considered to be immersed in a fluid flow at a Reynold number of 3 × 105. The structure is initially at rest and then moved by the action of the fluid flow. The numerical model is based on a strong coupling procedure for solving the Fluid-Structure Interaction problem. The Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations is used and an anisotropic diffusion equation is solved to compute the fluid mesh velocity and position at each time step. The finite volume method is used for the numerical resolution of the fluid dynamics equations. The structure deformations are described by the linear elasticity equation which is solved by the finite elements method. The Fluid-Structure coupled problem is solved by using the partitioned FSI implicit algorithm. A good agreement between numerical and experimental results for the hydrodynamics coefficients and hydrofoil deformations, maximum deflection and frequencies is obtained. The added mass and damping are analyzed and then the FSI effect on the dynamic deformations of the structure is highlighted.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Samuel W. Scott ◽  
Thomas Driesner

It has long been recognized that quartz precipitation from circulating hydrothermal fluids may reduce porosity and permeability near intrusions. However, the magnitude of permeability changes and potential feedbacks between flow, heat transfer, and quartz precipitation/dissolution remain largely unquantified. Here, we present numerical simulations of fluid convection around upper crustal intrusions which explicitly incorporate the feedback between quartz solubility and rock permeability. As groundwater is heated to ~350°C, silica dissolves from the host rock, increasing porosity and permeability. Further heating to supercritical conditions leads to intensive quartz precipitation and consequent permeability reduction. The initial host rock permeability and porosity are found to be main controls on the magnitude and timescales of permeability changes. While the permeability changes induced by quartz precipitation are moderate in host rocks with a primary porosity ≥ 0.05, quartz precipitation may reduce rock permeability by more than an order of magnitude in host rocks with a primary porosity of 0.025. Zones of quartz precipitation transiently change locations as the intrusion cools, thereby limiting the clogging effect, except for host rocks with low initial porosity. This permeability reduction occurs in timescales of hundreds of years in host rocks with initial high permeability and thousands of years in host rocks with intermediate permeability.


2019 ◽  
pp. 1-24
Author(s):  
Mathew Gregory Tagwai ◽  
Onimisi A. Jimoh ◽  
Kamar Shah Ariffin ◽  
Mohd Firdaus Abdul Razak

Sign in / Sign up

Export Citation Format

Share Document