scholarly journals The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems

2016 ◽  
pp. 373-392 ◽  
Author(s):  
Philipp Weis
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
N. Grobbe ◽  
S. Barde-Cabusson

We demonstrate the value of using the self-potential method to study volcanic environments, and particularly fluid flow in those environments. We showcase the fact that self-potential measurements are a highly efficient way to map large areas of volcanic systems under challenging terrain conditions, where other geophysical techniques may be challenging or expensive to deploy. Using case studies of a variety of volcano types, including tuff cones, shield volcanoes, stratovolcanoes, and monogenetic fields, we emphasize the fact that self-potential signals enable us to study fluid flow in volcanic settings on multiple spatial and temporal scales. We categorize the examples into the following three multiscale fluid-flow processes: (1) deep hydrothermal systems, (2) shallow hydrothermal systems, and (3) groundwater. These examples highlight the different hydrological, hydrothermal, and structural inferences that can be made from self-potential signals, such as insight into shallow and deep hydrothermal systems, cooling behavior of lava flows, different hydrogeological domains, upwelling, infiltration, and lateral groundwater and hydrothermal fluid flow paths and velocities, elevation of the groundwater level, crater limits, regional faults, rift zones, incipient collapse limits, structural domains, and buried calderas. The case studies presented in this paper clearly demonstrate that the measured SP signals are a result of the coplay between microscale processes (e.g., electrokinetic, thermoelectric) and macroscale structural and environmental features. We discuss potential challenges and their causes when trying to uniquely interpret self-potential signals. Through integration with different geophysical and geochemical data types such as subsurface electrical resistivity distributions obtained from, e.g., electrical resistivity tomography or magnetotellurics, soil CO2 flux, and soil temperature, it is demonstrated that the hydrogeological interpretations obtained from SP measurements can be better constrained and/or validated.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Simon C. Holbek ◽  
Madison Frank ◽  
James M. Scott ◽  
Steven A. F. Smith ◽  
Petrus J. le Roux ◽  
...  

The Otago Schist in the South Island of New Zealand represents an exhumed Mesozoic accretionary prism. Two coastal areas (Akatore Creek and Bruce Rocks) south of Dunedin preserve structural and geochemical evidence for the development of postmetamorphic hydrothermal systems that involved widespread fluid-rock reaction at shallow crustal depths. The Jurassic to Triassic pumpellyite-actinolite (Akatore Creek) to upper greenschist facies (Bruce Rocks) metamorphic fabrics were crosscut by sets of regionally extensive Cretaceous exhumation joints. Many of the joints were subsequently reactivated to form networks of small-displacement (<metres) strike-slip faults containing cemented fault breccias and veins composed of hydrothermal calcite, siderite, and ankerite. Paleostress analysis performed on infrequent fault slickenlines indicates an overall strike-slip paleostress regime and a paleo-σ1 orientation (azimuth 094°) similar to the contemporary σ1 orientation in Otago and Canterbury (azimuth c. 110°-120°). High δ18O values in vein calcite (δ18OVPDB=21 to 28‰), together with the predominance of Type I calcite twins, suggest that vein formation occurred at low temperatures (<200°C) in the shallow crust and was associated with strongly channelized fluid flow along the joint and fault networks. Mass-balance calculations performed on samples from carbonate alteration zones show that significant mobilisation of elements occurred during fluid flow and fluid-rock reaction. Whole-rock and in situ carbonate 87Sr/86Sr data indicate varying degrees of interaction between the hydrothermal fluids and the host rock schists. Fluids were likely derived from the breakdown of metamorphic Ca-rich mineral phases with low 87Rb in the host schists (e.g., epidote or calcite), as well as more radiogenic components such as mica. Overall, the field and geochemical data suggest that shallow fluid flow in the field areas was channelized along foliation surfaces, exhumation joints, and networks of brittle faults, and that these structures controlled the distribution of fluid-rock reactions and hydrothermal veins. The brittle fault networks and associated hydrothermal systems are interpreted to have formed after the onset of Early Miocene compression in the South Island and may represent the manifestation of fracturing and fluid flow associated with reverse reactivation of regional-scale faults such as the nearby Akatore Fault.


Sign in / Sign up

Export Citation Format

Share Document