Scaling behaviour in a hyper-viscous Navier-Stokes equation with random initial conditions

1997 ◽  
Vol 231 (3-4) ◽  
pp. 235-239 ◽  
Author(s):  
Vipul Periwal
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Khalid M. Saqr ◽  
Simon Tupin ◽  
Sherif Rashad ◽  
Toshiki Endo ◽  
Kuniyasu Niizuma ◽  
...  

Abstract Contemporary paradigm of peripheral and intracranial vascular hemodynamics considers physiologic blood flow to be laminar. Transition to turbulence is considered as a driving factor for numerous diseases such as atherosclerosis, stenosis and aneurysm. Recently, turbulent flow patterns were detected in intracranial aneurysm at Reynolds number below 400 both in vitro and in silico. Blood flow is multiharmonic with considerable frequency spectra and its transition to turbulence cannot be characterized by the current transition theory of monoharmonic pulsatile flow. Thus, we decided to explore the origins of such long-standing assumption of physiologic blood flow laminarity. Here, we hypothesize that the inherited dynamics of blood flow in main arteries dictate the existence of turbulence in physiologic conditions. To illustrate our hypothesis, we have used methods and tools from chaos theory, hydrodynamic stability theory and fluid dynamics to explore the existence of turbulence in physiologic blood flow. Our investigation shows that blood flow, both as described by the Navier–Stokes equation and in vivo, exhibits three major characteristics of turbulence. Womersley’s exact solution of the Navier–Stokes equation has been used with the flow waveforms from HaeMod database, to offer reproducible evidence for our findings, as well as evidence from Doppler ultrasound measurements from healthy volunteers who are some of the authors. We evidently show that physiologic blood flow is: (1) sensitive to initial conditions, (2) in global hydrodynamic instability and (3) undergoes kinetic energy cascade of non-Kolmogorov type. We propose a novel modification of the theory of vascular hemodynamics that calls for rethinking the hemodynamic–biologic links that govern physiologic and pathologic processes.


2004 ◽  
Vol 14 (07) ◽  
pp. 2381-2386 ◽  
Author(s):  
S. A. BIBLE ◽  
J. M. MCDONOUGH

This research is part of an ongoing effort to construct "synthetic velocity" subgrid-scale (SGS) models using discrete dynamical systems (DDSs) for use in large-eddy simulations of turbulent flows. Here we will outline the derivation of the two-dimensional (2-D) "Poor Man's Navier–Stokes" (PMNS) equation from the 2-D, incompressible Navier–Stokes equation to be used in such models and report results from subsequent numerical investigations. In our results emphasis is placed on the effects of initial conditions on the dynamics of the 2-D PMNS equation, using such modes of investigation as regime maps, basins of attraction diagrams, phase portraits, time series and power spectra. The most important findings of this investigation concern applicable ranges of bifurcation parameters, causes and effects of symmetries seen in solutions of the PMNS equation, and the suitability of the methods of investigation used here.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Sign in / Sign up

Export Citation Format

Share Document