BASINS OF ATTRACTION OF THE TWO-DIMENSIONAL "POOR MAN'S NAVIER–STOKES EQUATION"

2004 ◽  
Vol 14 (07) ◽  
pp. 2381-2386 ◽  
Author(s):  
S. A. BIBLE ◽  
J. M. MCDONOUGH

This research is part of an ongoing effort to construct "synthetic velocity" subgrid-scale (SGS) models using discrete dynamical systems (DDSs) for use in large-eddy simulations of turbulent flows. Here we will outline the derivation of the two-dimensional (2-D) "Poor Man's Navier–Stokes" (PMNS) equation from the 2-D, incompressible Navier–Stokes equation to be used in such models and report results from subsequent numerical investigations. In our results emphasis is placed on the effects of initial conditions on the dynamics of the 2-D PMNS equation, using such modes of investigation as regime maps, basins of attraction diagrams, phase portraits, time series and power spectra. The most important findings of this investigation concern applicable ranges of bifurcation parameters, causes and effects of symmetries seen in solutions of the PMNS equation, and the suitability of the methods of investigation used here.

AIAA Journal ◽  
2003 ◽  
Vol 41 (9) ◽  
pp. 1690-1696 ◽  
Author(s):  
Tianliang Yang ◽  
J. M. McDonough ◽  
J. D. Jacob

2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sunggeun Lee ◽  
Shin-Kun Ryi ◽  
Hankwon Lim

We investigate the Navier-Stokes equation in the presence of Coriolis force in this article. First, the vortex equation with the Coriolis effect is discussed. It turns out that the vorticity can be generated due to a rotation coming from the Coriolis effect, Ω. In both steady state and two-dimensional flow, the vorticity vector ω gets shifted by the amount of -2Ω. Second, we consider the specific expression of the velocity vector of the Navier-Stokes equation in two dimensions. For the two-dimensional potential flow v→=∇→ϕ, the equation satisfied by ϕ is independent of Ω. The remaining Navier-Stokes equation reduces to the nonlinear partial differential equations with respect to the velocity and the corresponding exact solution is obtained. Finally, the steady convective diffusion equation is considered for the concentration c and can be solved with the help of Navier-Stokes equation for two-dimensional potential flow. The convective diffusion equation can be solved in three dimensions with a simple choice of c.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Khalid M. Saqr ◽  
Simon Tupin ◽  
Sherif Rashad ◽  
Toshiki Endo ◽  
Kuniyasu Niizuma ◽  
...  

Abstract Contemporary paradigm of peripheral and intracranial vascular hemodynamics considers physiologic blood flow to be laminar. Transition to turbulence is considered as a driving factor for numerous diseases such as atherosclerosis, stenosis and aneurysm. Recently, turbulent flow patterns were detected in intracranial aneurysm at Reynolds number below 400 both in vitro and in silico. Blood flow is multiharmonic with considerable frequency spectra and its transition to turbulence cannot be characterized by the current transition theory of monoharmonic pulsatile flow. Thus, we decided to explore the origins of such long-standing assumption of physiologic blood flow laminarity. Here, we hypothesize that the inherited dynamics of blood flow in main arteries dictate the existence of turbulence in physiologic conditions. To illustrate our hypothesis, we have used methods and tools from chaos theory, hydrodynamic stability theory and fluid dynamics to explore the existence of turbulence in physiologic blood flow. Our investigation shows that blood flow, both as described by the Navier–Stokes equation and in vivo, exhibits three major characteristics of turbulence. Womersley’s exact solution of the Navier–Stokes equation has been used with the flow waveforms from HaeMod database, to offer reproducible evidence for our findings, as well as evidence from Doppler ultrasound measurements from healthy volunteers who are some of the authors. We evidently show that physiologic blood flow is: (1) sensitive to initial conditions, (2) in global hydrodynamic instability and (3) undergoes kinetic energy cascade of non-Kolmogorov type. We propose a novel modification of the theory of vascular hemodynamics that calls for rethinking the hemodynamic–biologic links that govern physiologic and pathologic processes.


2018 ◽  
Vol 12 (10) ◽  
pp. 467-475
Author(s):  
E.J. Canate-Gonzalez ◽  
W. Fong-Silva ◽  
C.A. Severiche-Sierra ◽  
Y.A. Marrugo-Ligardo ◽  
J. Jaimes-Morales

2013 ◽  
Vol 729 ◽  
pp. 364-376 ◽  
Author(s):  
John C. Bowman

AbstractIn addition to conserving energy and enstrophy, the nonlinear terms of the two-dimensional incompressible Navier–Stokes equation are well known to conserve the global integral of any continuously differentiable function of the scalar vorticity field. However, the phenomenological role of these additional inviscid invariants, including the issue as to whether they cascade to large or small scales, is an open question. In this work, well-resolved implicitly dealiased pseudospectral simulations suggest that the fourth power of the vorticity cascades to small scales.


2013 ◽  
Vol 715 ◽  
pp. 359-388 ◽  
Author(s):  
Basile Gallet ◽  
William R. Young

AbstractWe investigate solutions of the two-dimensional Navier–Stokes equation in a $\lrm{\pi} \ensuremath{\times} \lrm{\pi} $ square box with stress-free boundary conditions. The flow is steadily forced by the addition of a source $\sin nx\sin ny$ to the vorticity equation; attention is restricted to even $n$ so that the forcing has zero integral. Numerical solutions with $n= 2$ and $6$ show that at high Reynolds numbers the solution is a domain-scale vortex condensate with a strong projection on the gravest mode, $\sin x\sin y$. The sign of the vortex condensate is selected by a symmetry-breaking instability. We show that the amplitude of the vortex condensate has a finite limit as $\nu \ensuremath{\rightarrow} 0$. Using a quasilinear approximation we make an analytic prediction of the amplitude of the condensate and show that the amplitude is determined by viscous selection of a particular solution from a family of solutions to the forced two-dimensional Euler equation. This theory indicates that the condensate amplitude will depend sensitively on the form of the dissipation, even in the undamped limit. This prediction is verified by considering the addition of a drag term to the Navier–Stokes equation and comparing the quasilinear theory with numerical solution.


2013 ◽  
Vol 729 ◽  
pp. 285-308 ◽  
Author(s):  
Maciej J. Balajewicz ◽  
Earl H. Dowell ◽  
Bernd R. Noack

AbstractWe generalize the POD-based Galerkin method for post-transient flow data by incorporating Navier–Stokes equation constraints. In this method, the derived Galerkin expansion minimizes the residual like POD, but with the power balance equation for the resolved turbulent kinetic energy as an additional optimization constraint. Thus, the projection of the Navier–Stokes equation on to the expansion modes yields a Galerkin system that respects the power balance on the attractor. The resulting dynamical system requires no stabilizing eddy-viscosity term – contrary to other POD models of high-Reynolds-number flows. The proposed Galerkin method is illustrated with two test cases: two-dimensional flow inside a square lid-driven cavity and a two-dimensional mixing layer. Generalizations for more Navier–Stokes constraints, e.g. Reynolds equations, can be achieved in straightforward variation of the presented results.


Sign in / Sign up

Export Citation Format

Share Document