U–Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers

2003 ◽  
Vol 120 (1-2) ◽  
pp. 43-53 ◽  
Author(s):  
Axel K Schmitt ◽  
Jan M Lindsay ◽  
Shan de Silva ◽  
Robert B Trumbull
GSA Today ◽  
2004 ◽  
Vol 14 (4) ◽  
pp. 4 ◽  
Author(s):  
Allen F. Glazner ◽  
John M. Bartley ◽  
Drew S. Coleman ◽  
Walt Gray ◽  
Ryan Z. Taylor
Keyword(s):  

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Hyeon-Seon Ahn ◽  
Yuhji Yamamoto

AbstractFinding the statistical intensity signatures of the Earth’s magnetic field over geologic time has helped understanding of the evolution of the Earth’s interior and its interactions with other integral parts of Earth systems. However, this has been often hampered by a paucity of absolute paleointensity (API) data, which are difficult to obtain primarily because of non-ideal magnetic behaviors of natural materials. Here, we present new API determination data with paleodirectional and rock magnetic analyses from basaltic rocks probably aged ~ 4‒5 Ma in Baengnyeong Island, Korea. Paleodirectional analysis obtained an overall mean direction of D = 347.3° and I = 38.3° (α95 = 4.9°, k = 113.4) corresponding to a virtual geomagnetic pole at 342.1° E and 70.2° N. Comprehensive rock magnetic analyses identified Ti-poor titanomagnetite with, in part, multi-domain (MD) particles as a main carrier of remanent magnetization. The Tsunakawa–Shaw (TS) method yielded 12 qualified API estimates with a high success rate, efficiently removing possible MD influences, and resulted in a mean value of 13.1 μT with good precision (1.7 μT, standard deviation). The Thellier method of the IZZI protocol with pTRM checks, coupled with the use of a bootstrap approach instead of the “conventional best-fitting” in API determination, gave 6.6‒19.7 μT as a 95% confidence interval of its mean API estimate, which supports the reliability of our TS-derived API mean estimate; but it is not considered in the final mean value because of the relatively large uncertainty. The virtual dipole moment corresponding to the TS-derived API mean, 2.9 (± 0.4) × 1022 Am2, is somewhat lower than the expectations of the past few Myr averages. Combined with a global API database, our new data implies a larger dispersion in the dipole moment during the early Pliocene than previously inferred. This also suggests that the issue of whether the early Pliocene average dipole strength was moderately high (> 5 × 1022 Am2) or consistent (4‒5 × 1022 Am2) should be discussed further.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 548
Author(s):  
Lia N. Kogarko ◽  
Troels F. D. Nielsen

The Lovozero complex, Kola peninsula, Russia and the Ilímaussaq complex in Southwest Greenland are the largest known layered peralkaline intrusive complexes. Both host world-class deposits rich in REE and other high-tech elements. Both complexes expose spectacular layering with horizons rich in eudialyte group minerals (EGM). We present a detailed study of the composition and cryptic variations in cumulus EGM from Lovozero and a comparison with EGM from Ilímaussaq to further our understanding of peralkaline magma chambers processes. The geochemical signatures of Lovozero and Ilímaussaq EGM are distinct. In Lovozero EGMs are clearly enriched in Na + K, Mn, Ti, Sr and poorer Fe compared to EGM from Ilímaussaq, whereas the contents of ΣREE + Y and Cl are comparable. Ilímaussaq EGMs are depleted in Sr and Eu, which points to plagioclase fractionation and an olivine basaltic parent. The absence of negative Sr and Eu anomalies suggest a melanephelinitic parent for Lovozero. In Lovozero the cumulus EGMs shows decrease in Fe/Mn, Ti, Nb, Sr, Ba and all HREE up the magmatic layering, while REE + Y and Cl contents increase. In Lovozero EGM spectra show only a weak enrichment in LREE relative to HREE. The data demonstrates a systematic stratigraphic variation in major and trace elements compositions of liquidus EGM in the Eudialyte Complex, the latest and uppermost part of Lovozero. The distribution of elements follows a broadly linear trend. Despite intersample variations, the absence of abrupt changes in the trends suggests continuous crystallization and accumulation in the magma chamber. The crystallization was controlled by elemental distribution between EGM and coexisting melt during gravitational accumulation of crystals and/or mushes in a closed system. A different pattern is noted in the Ilimaussaq Complex. The elemental trends have variable steepness up the magmatic succession especially in the uppermost zones of the Complex. The differences between the two complexes are suggested to be related dynamics of the crystallization and accumulation processes in the magma chambers, such as arrival of new liquidus phases and redistributions by mush melts.


Sign in / Sign up

Export Citation Format

Share Document