scholarly journals Paleomagnetic study of basaltic rocks from Baengnyeong Island, Korea: efficiency of the Tsunakawa–Shaw paleointensity determination on non-SD-bearing materials and implication for the early Pliocene geomagnetic field intensity

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Hyeon-Seon Ahn ◽  
Yuhji Yamamoto

AbstractFinding the statistical intensity signatures of the Earth’s magnetic field over geologic time has helped understanding of the evolution of the Earth’s interior and its interactions with other integral parts of Earth systems. However, this has been often hampered by a paucity of absolute paleointensity (API) data, which are difficult to obtain primarily because of non-ideal magnetic behaviors of natural materials. Here, we present new API determination data with paleodirectional and rock magnetic analyses from basaltic rocks probably aged ~ 4‒5 Ma in Baengnyeong Island, Korea. Paleodirectional analysis obtained an overall mean direction of D = 347.3° and I = 38.3° (α95 = 4.9°, k = 113.4) corresponding to a virtual geomagnetic pole at 342.1° E and 70.2° N. Comprehensive rock magnetic analyses identified Ti-poor titanomagnetite with, in part, multi-domain (MD) particles as a main carrier of remanent magnetization. The Tsunakawa–Shaw (TS) method yielded 12 qualified API estimates with a high success rate, efficiently removing possible MD influences, and resulted in a mean value of 13.1 μT with good precision (1.7 μT, standard deviation). The Thellier method of the IZZI protocol with pTRM checks, coupled with the use of a bootstrap approach instead of the “conventional best-fitting” in API determination, gave 6.6‒19.7 μT as a 95% confidence interval of its mean API estimate, which supports the reliability of our TS-derived API mean estimate; but it is not considered in the final mean value because of the relatively large uncertainty. The virtual dipole moment corresponding to the TS-derived API mean, 2.9 (± 0.4) × 1022 Am2, is somewhat lower than the expectations of the past few Myr averages. Combined with a global API database, our new data implies a larger dispersion in the dipole moment during the early Pliocene than previously inferred. This also suggests that the issue of whether the early Pliocene average dipole strength was moderately high (> 5 × 1022 Am2) or consistent (4‒5 × 1022 Am2) should be discussed further.

2021 ◽  
Author(s):  
Aleksandr Pasenko ◽  
Ivanov Alexey ◽  
Malyshev Sergey ◽  
Travin Alexey

<p>Paleomagnetic data obtained from Neoproterozoic glacial and glacier-associated sedimentary rocks indicate that they were formed at near equatorial latitudes. Based on these data, the Snowball Earth hypothesis was proposed [Kirschvink, 1992]. According to this hypothesis, during the Neoproterozoic glaciations, the entire planet (including the oceans) was completely covered with ice. Although evidence is emerging that does not support this hypothesis, there is still no conclusive evidence that it is not true [Sansjofre et al., 2011].</p><p>It is worth noting that the Snowball earth hypothesis is based on paleomagnetic data. At the same time, the available paleomagnetic data for the Neoproterozoic-Early Cambrian [Meert, Van der Voo, 2001; Shatsillo et al, 2005; Abrajevitch, Van der Voo, 2010; Pavlov et al., 2018] difficult to interpret in terms of the Geocentric Axial Dipole hypothesis. This imposes serious restrictions on the possibility of correctly constructing paleomagnetic reconstructions.</p><p>For the development and testing of a model of the geomagnetic field of the Neoproterozoic, it is necessary to obtain a lot of high-quality paleomagnetic data. Data from well-dated magmatic bodies are especially valuable.</p><p>Within the framework of this work, we obtained paleomagnetic data from three carbonatite dikes (7 to 30 cm thickness) exposed in the Udzha river bank on the Udzha uplift in the northeastern part of the Siberian platform. These dikes are associated with the large alkaline Tomtor massif located 15 km to the west. Ar/Ar dating of phlogopite megacrysts gives an intrusion age of the dikes of 706.1±8.8 Ma. Coordinates of the virtual geomagnetic pole, calculated from the direction of the high-temperature component of magnetization: Φ=-20.7°; Λ=88.6°; Α95=3.4°.</p><p>Our report will present preliminary interpretation of these data, as well as their comparison with paleomagnetic data on close-aged objects in Siberia.</p><p><em>The research was supported by the Russian Science Foundation grant (19-77-10048).</em></p><p>References:</p>


Author(s):  
Wei Qingyun ◽  
Li Dongjie ◽  
Cao Guanyu ◽  
Zhang Weixi ◽  
Wang Shuangping

2020 ◽  
Author(s):  
Ramon Egli ◽  
Tatiana Savranskaia ◽  
Jean-Pierre Valet ◽  
Franck Bassinot ◽  
Laure Meynadier ◽  
...  

<p>The global production rate of the cosmogenic isotope <sup>10</sup>Be by cosmic ray spallation is modulated by the activity of the sun and the intensity of the far-reaching component of the Earth magnetic field, which is in turn dominated by the dipolar term. Therefore, sedimentary <sup>10</sup>Be records can be used to reconstruct past variations of the geomagnetic dipole moment. However, several environmental factors affect the transfer of <sup>10</sup>Be atoms from the high atmosphere and soils, where it is produced, to the sediment, introducing a significant climatic modulation that can, in worst cases, completely obscure the paleomagnetic signal. These factors include variations of the continental runoff, oceanic circulation, sediment fluxes, and sediment scavenging effi­ciency. The latter is largely removed by normalizing the <sup>10</sup>Be record with the concentration of authigenic <sup>9</sup>Be, which is accumulated by sediment particles in the same manner as the cosmo­genic isotope. Even with this correction in place, individual <sup>10</sup>Be/<sup>9</sup>Be records are significantly influenced by climate, to the point that only major geomagnetic events, such as the MB reversal, can be recognized. We present a model, which, for the first time, enables to deconvolve, at least partially, the climatic and magnetic components of <sup>10</sup>Be/<sup>9</sup>Be records on a set of cores from the Atlantic, Indian, and Pacific Ocean. The climatic modulation is composed of an additive term, which reflects Be recycling through diagenetic release from sediments, and a multiplicative term, which is dominated by oceanic current patterns. Knowledge of these terms enables to remove, at least partially, site-specific environmental effects, obtaining a corrected <sup>10</sup>Be/<sup>9</sup>Be stack that can be inverted to reconstruct variations of the dipole moment during the last geomagnetic reversal.</p>


1998 ◽  
Vol 35 (9) ◽  
pp. 1054-1069 ◽  
Author(s):  
Kenneth L Buchan ◽  
James K Mortensen ◽  
Kenneth D Card ◽  
John A Percival

In the first collaborative study of paleomagnetism and precise U-Pb geochronology in the Minto block of the Superior Province, mafic dyke swarms with three widely divergent paleomagnetic signatures and isotopic ages have been identified. The 2505 ± 2 Ma Ptarmigan dykes trend north to northeast and have a virtual geomagnetic pole at 42°S, 220°E, similar to that of 2473-2446 Ma Matachewan dykes of the southern Superior Province. The ca. 2230 Ma Maguire dykes trend west to northwest and yield a paleopole at 9°S, 267°E, similar to those for 2216+8-4 Ma Senneterre dykes and 2217-2210 Ma Nipissing sills of the southern Superior and Southern provinces, respectively. The 2209 ± 1 Ma Klotz dykes trend west-northwest, but do not carry a consistent magnetization direction. Finally, 1998 ± 2 Ma Minto dykes of west-northwest to northwest trend, identical in age to the 1998 Ma ± 2 Ma Purtuniq ophiolite of the Cape Smith Belt, have a paleopole at 38°N, 174°E. The similarity of paleopoles for the ca. 2.23-2.21 Ga Maguire dykes of the Minto block, Senneterre dykes of the southern Superior, and Nipissing sills of the Southern Province demonstrates that these regions were in their present relative latitudes and orientations at that time. Likewise, the similarity of the Ptarmigan virtual geomagnetic pole and the Matachewan paleopole suggests little relative latitudinal movement or rotation of the two regions since ca. 2.5 Ga. The Maguire, Senneterre, and Klotz dykes form a roughly radiating pattern and may represent one quadrant of a giant radiating dyke swarm centred southeast of Ungava Bay, whose focus marks the location of a mantle plume responsible for ca. 2.22 Ga breakup along the eastern margin of the Superior Province. If so, the coeval Nipissing sills that intrude sedimentary rocks of the Huronian Supergroup of the Southern Province may have been fed laterally by Senneterre dykes from the Ungava plume centre.


2021 ◽  
Author(s):  
Elisabeth Schnepp ◽  
Patrick Arneitz ◽  
Morgan Ganerød ◽  
Robert Scholger ◽  
Ingomar Fritz ◽  
...  

Abstract Pliocene volcanic rocks from South-East-Austria were paleomagnetically investigated. Samples were taken from 28 sites located on eight different volcanoes. Rock magnetic investigations revealed that magnetic carriers are Ti-rich or Ti-poor titanomagnetites with mainly pseudo-single-domain grain size. Characteristic remanent magnetization directions were obtained from alternating field as well as from thermal demagnetization. Four localities give reversed directions agreeing with the expected direction from secular variation. Another four localities of the Klöch-Königsberg volcanic complex (3) and the Neuhaus volcano (1) have reversed directions with shallow inclinations and declinations of about 240° while the locality Steinberg yields a positive inclination of about 30° and 200° declination. These aberrant directions cannot be explained by local or regional tectonic movements. All virtual geomagnetic pole positions are located on the southern hemisphere. Four virtual geomagnetic poles lie close to the geographic pole, while all others are concentrated in a narrow longitude sector offshore South America (310° to 355°) with low virtual geomagnetic pole latitudes ranging from − 15° to -70°. The hypothesis that a transitional geomagnetic field configuration was recorded during the short volcanic activity of these five localities is supported by 9 paleointensity results and 39Ar/40Ar dating. Virtual geomagnetic dipole moments range from 1.1 to 2.9·1022 Am2 for sites with low VGP latitudes about 60° and from 3.0 to 9.3·1022 Am2 for sites with higher virtual geomagnetic pole latitudes. The new 39Ar/40Ar ages of 2.51 ± 0.27 Ma for Klöch and 2.39 ± 0.03 Ma for Steinberg allow for the correlation of the Styrian transitional directions with cryptochron C2r.2r-1 of the geomagnetic polarity time scale.


The number of available palaeomagnetic records displaying detailed transitional field behaviour has increased significantly over the past few years. The expanded data set of transitions now includes records of sequential reversals from the same site locality as well as multiple recordings of a particular reversal from widely separated sites. Such data are most useful with regard to the testing of geomagnetic reversal models. First, records of successive reversals may make it possible to distinguish whether transitional fields originate primarily with the configurational characteristics of the reversing geodynamo or whether a non-reversing portion of the field is responsible. Such an analysis does not yet provide conclusive evidence in support of either hypothesis. Second, multiple records from distant sites furnish the best possible data with regard to the determination of the harmonic content of particular transitional fields. In this regard, two quite independent, testable models have been applied to the several recordings of the Matuyama-Brunhes transition. Findings support the hypothesis that the intermediate field geometry during this particular polarity transition was indeed controlled by non-dipole zonal harmonic terms. Moreover, analysis of the paths of the virtual geomagnetic pole associated with the available records strongly suggests that the most extreme dominance of transitional fields by axisymmetric components occurs during the onset of the reversal, a finding that now has support on purely theoretical grounds. Finally, field behaviour associated with existing igneous-recorded palaeomagnetic excursions is not unlike that observed at the onset of field reversals. Hence, there is growing evidence in support of the hypothesis that attempts by the geodynamo to reverse are not always successful. These recordings of apparent abortive reversals may be of considerable value with regard to our understanding of transitional fields and geomagnetic reversal.


1980 ◽  
Vol 17 (11) ◽  
pp. 1546-1558 ◽  
Author(s):  
Bertrand Sichler ◽  
Jean-Louis Olivet ◽  
Jean-Marie Auzende ◽  
Hélène Jonquet ◽  
Jean Bonnin ◽  
...  

The mobility of Morocco relative to Africa during the early history of the Atlantic has long been debated: arguments have been developed from Atlantic kinematic considerations and from paleomagnetic results. Both types of arguments are reexamined here. Using a new model of the Atlantic Ocean evolution described elsewhere, it is shown that the reconstructions of the positions of Africa relative to North America before the Atlantic opening, and at the times of magnetic anomalies M22 and J, do not imply a major motion of Morocco independent of Africa during these periods of time. The corresponding geomagnetic paleopoles have been recomputed from sample sites located on both "mobile" Morocco and "stable" Africa. The results indicate that the virtual geomagnetic pole of "mobile" Morocco for the Liassic falls within the 95% confidence cone of "stable" Africa. It is thus concluded that no major movement has occurred between "mobile" Morocco and "stable" Africa during the early phases of opening of the central Atlantic Ocean. This is in accordance with the field geological observations on the South Atlas fault; however, limited motion along this lineament, as observed in the field, is still compatible with the above conclusion, owing to the limited resolving power of both kinematic and paleomagnetic methods.


Sign in / Sign up

Export Citation Format

Share Document