Cloning, characterization and chromosomal location of three genes encoding host-cell-wall-degrading enzymes in Leptosphaeria maculans, a fungal pathogen of Brassica spp.

Gene ◽  
2000 ◽  
Vol 248 (1-2) ◽  
pp. 89-97 ◽  
Author(s):  
Adrienne C. Sexton ◽  
Martina Paulsen ◽  
Johannes Woestemeyer ◽  
Barbara J. Howlett
2020 ◽  
Vol 117 (11) ◽  
pp. 6003-6013 ◽  
Author(s):  
Vincent W. Wu ◽  
Nils Thieme ◽  
Lori B. Huberman ◽  
Axel Dietschmann ◽  
David J. Kowbel ◽  
...  

Filamentous fungi, such asNeurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling ofN. crassaon 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors inN. crassaand characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


2013 ◽  
Vol 59 (6) ◽  
pp. 417-424 ◽  
Author(s):  
Kamal S. Abubaker ◽  
Calvin Sjaarda ◽  
Alan J. Castle

Members of the genus Trichoderma are very effective competitors of a variety of fungi. Cell-wall-degrading enzymes, including proteinases, glucanases, and chitinases, are commonly secreted as part of the competitive process. Trichoderma aggressivum is the causative agent of green mould disease of the button mushroom, Agaricus bisporus. The structures of 3 T. aggressivum genes, prb1 encoding a proteinase, ech42 encoding an endochitinase, and a β-glucanase gene, were determined. Promoter elements in the prb1 and ech42 genes suggested that transcription is regulated by carbon and nitrogen levels and by stress. Both genes had mycoparasitism-related elements indicating potential roles for the protein products in competition. The promoter of the β-glucanase gene contained CreA and AreA binding sites indicative of catabolite regulation but contained no mycoparasitism elements. Transcription of the 3 genes was measured in mixed cultures of T. aggressivum and A. bisporus. Two A. bisporus strains, U1, which is sensitive to green mould disease, and SB65, which shows some resistance, were used in co-cultivation tests to assess possible roles of the genes in disease production and severity. prb1 and ech42 were coordinately upregulated after 5 days, whereas β-glucanase transcription was upregulated from day 0 with both Agaricus strains. Upregulation was much less pronounced in mixed cultures of T. aggressivum with the resistant strain, SB65, than with the sensitive strain, U1. These observations suggested that the proteins encoded by these genes have roles in both nutrition and in severity of green mould disease.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. e1007322 ◽  
Author(s):  
Irina S. Druzhinina ◽  
Komal Chenthamara ◽  
Jian Zhang ◽  
Lea Atanasova ◽  
Dongqing Yang ◽  
...  

2020 ◽  
Author(s):  
Julia Badstöber ◽  
Stefan Ciaghi ◽  
Sigrid Neuhauser

AbstractBiotic interactions of plants and microbial pathogens can cause drastic changes in cell wall composition in response to developmental reprogramming caused as consequence of an infection. Clubroot disease, caused by the biotrophic plant pathogen Plasmodiophora brassicae (Phytomyxea, Rhizaria), is the economically most important disease of Brassica crops worldwide. The disease is best known by the characteristic hypertrophied roots (root galls, clubroots). Amongst a series of physiological changes of the host tissue, the formation of the characteristic root galls leads to cell wall modification and reorganization. Cell wall chemistry and the hosts genetic repertoire are discussed to play a role in the resilience of plants against clubroot disease. Plant cells infected with P. brassicae are markedly enlarged, and look very differently from uninfected, healthy cells. Here we systematically review cell wall related processes that lead to the typical clubroot phenotype and provide novel insights how P. brassicae uses these modifications to benefit its own development. An infection with P. brassicae impacts on nearly all cell wall related processes, but all alterations are meaningful for successful growth and development of P. brassicae. Processes related to cell wall stability and rigidity (e.g. cellulose, pectin or lignin synthesis) are down-regulated, while cell wall degrading enzymes or processes that increase the flexibility of the host cell wall (e.g. expansin) are up-regulated. The here presented findings indicate that P. brassicae weakens the structural stability of its host cell while it increases its elasticity, which in consequence allows P. brassicae to grow bigger and ultimately to develop more resting spores. Consequently, the understanding of the modification of the host cell wall is important for the formation of the characteristic root galls but also to better understand clubroot disease.


PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15635 ◽  
Author(s):  
Yannick Pauchet ◽  
Paul Wilkinson ◽  
Ritika Chauhan ◽  
Richard H. ffrench-Constant

Sign in / Sign up

Export Citation Format

Share Document