cell wall modification
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 110)

H-INDEX

21
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Agustina De Francesco ◽  
Amelia H. Lovelace ◽  
Dipan Shaw ◽  
Min Qiu ◽  
Yuanchao Wang ◽  
...  

‘Candidatus Liberibacter asiaticus’ (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.


2022 ◽  
Author(s):  
Suo Qiu ◽  
James M. Bradley ◽  
Peijun Zhang ◽  
Roy Chaudhuri ◽  
Mark Blaxter ◽  
...  

Parasites have evolved suites of proteins, Virulence Factors (VFs), that are delivered into host plants to facilitate colonization. Whilst VFs mediating plant-microbe and plant-nematode interactions have been characterised extensively, less is known about VFs mediating parasitic plant interactions with their hosts. Striga hermonthica is an obligate, root-parasitic plant capable of parasitizing multiple cereal hosts in sub-Saharan Africa, causing devastating losses in yields. An understanding of the molecular nature and allelic variation of VFs in S. hermonthica is essential for breeding durable resistance and delaying the evolution of parasite virulence. To address this issue, we assembled a genome for Striga hermonthica and identified candidate VFs by combining in silico prediction of secreted proteins with pooled sequencing of parasites growing on a susceptible and a strongly resistant rice host. Consistent with predictions for parasites, like S. hermonthica, that can interact with multiple hosts, we identified multiple loci, potentially with a wide range of functions, implicated in overcoming host resistance. Extremely different allele frequencies were observed at 152 non-secreted and 38 putatively secreted VFs between S. hermonthica parasitising the resistant and susceptible rice varieties. Our candidate, secreted VFs encompassed functions such as host cell wall modification, protease inhibitors, oxidoreductase and kinase activities, as well as several with unknown functions. Consistent with maintenance of variation at virulence loci by balancing selection the candidate loci had significantly higher Tajima’s D on average than the genomic background. Our results show that diverse strategies are used by  S. hermonthica  to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as a part of a sustainable control strategy.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Gyan P. Mishra ◽  
Muraleedhar S. Aski ◽  
Tejas Bosamia ◽  
Shiksha Chaurasia ◽  
Dwijesh Chandra Mishra ◽  
...  

Dry root rot (Rhizoctonia bataticola) is an important disease of lentils (Lens culinaris Medik.).To gain an insight into the molecular aspects of host-pathogen interactions, the RNA-seq approach was used in lentils following inoculation with R.bataticola. The RNA-Seq has generated >450 million high-quality reads (HQRs) and nearly 96.97% were properly aligned to the reference genome. Very high similarity in FPKM (fragments per kilobase of exon per million mapped fragments) values (R > 0.9) among biological replicates showed the consistency of the RNA-Seq results. The study revealed various DEGs (differentially expressed genes) that were associated with changes in phenolic compounds, transcription factors (TFs), antioxidants, receptor kinases, hormone signals which corresponded to the cell wall modification enzymes, defense-related metabolites, and jasmonic acid (JA)/ethylene (ET) pathways. Gene ontology (GO) categorization also showed similar kinds of significantly enriched similar GO terms. Interestingly, of the total unigenes (42,606), 12,648 got assembled and showed significant hit with Rhizoctonia species. String analysis also revealed the role of various disease responsive proteins viz., LRR family proteins, LRR-RLKs, protein kinases, etc. in the host-pathogen interaction. Insilico validation analysis was performed using Genevestigator® and DEGs belonging to six major defense-response groups viz., defense-related enzymes, disease responsive genes, hormones, kinases, PR (pathogenesis related) proteins, and TFs were validated. For the first time some key miRNA targets viz. miR156, miR159, miR167, miR169, and miR482 were identified from the studied transcriptome, which may have some vital role in Rhizoctonia-based responses in lentils. The study has revealed the molecular mechanisms of the lentil/R.bataticola interactions and also provided a theoretical approach for the development of lentil genotypes resistant to R.bataticola.


2021 ◽  
Vol 23 (1) ◽  
pp. 239
Author(s):  
Eui-Jung Kim ◽  
Woo-Jong Hong ◽  
Yu-Jin Kim ◽  
Ki-Hong Jung

The MADS (MCM1-AGAMOUS-DEFFICIENS-SRF) gene family has a preserved domain called MADS-box that regulates downstream gene expression as a transcriptional factor. Reports have revealed three MADS genes in rice, OsMADS62, OsMADS63, and OsMADS68, which exhibits preferential expression in mature rice pollen grains. To better understand the transcriptional regulation of pollen germination and tube growth in rice, we generated the loss-of-function homozygous mutant of these three OsMADS genes using the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system in wild-type backgrounds. Results showed that the triple knockout (KO) mutant showed a complete sterile phenotype without pollen germination. Next, to determine downstream candidate genes that are transcriptionally regulated by the three OsMADS genes during pollen development, we proceeded with RNA-seq analysis by sampling the mature anther of the mutant and wild-type. Two hundred and seventy-four upregulated and 658 downregulated genes with preferential expressions in the anthers were selected. Furthermore, downregulated genes possessed cell wall modification, clathrin coat assembly, and cellular cell wall organization features. We also selected downregulated genes predicted to be directly regulated by three OsMADS genes through the analyses for promoter sequences. Thus, this study provides a molecular background for understanding pollen germination and tube growth mediated by OsMADS62, OsMADS63, and OsMADS68 with mature pollen preferred expression.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Yaming Yang ◽  
Lijuan Chen ◽  
Chenyu Wang ◽  
Honghui Peng ◽  
Weijie Yin ◽  
...  

Kiwifruit black spot disease has become increasingly widespread in many ‘CuiXiang’ kiwifruit plantings regions. This research was aimed at the pathogenic microorganisms of black spot of the ‘CuiXiang’ cultivar. Physiological, morphological and transcriptional characteristics between black spot fruit and healthy fruits were evaluated. Then, it applied a high-throughput internal transcribed spacer (ITS) sequencing to analyze the black spot disease microbial community. The cell structure showed that mycelium was attached to the surface of the kiwifruit through black spot, and that consequently the mitochondria were damaged, starch particles were reduced, and shelf life was shortened. Transcriptome revealed that different genes in kiwifruit with black spot disease were involved in cell wall modification, pathogen perception, and signal transduction. ITS sequencing results described the disease-causing fungi and found that the microbial diversity of black spot-diseased fruit was lower than that of healthy fruit. We predict that candidate pathogenic fungi Cladosporium cladosporioides, Diaporthe phaseolorum, Alternaria alternata, and Trichothecium roseum may cause black spot. This study was to explore the pathogenic fungal community of ‘CuiXiang’ kiwifruit black spot disease and to provide essential information for field prevention.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2642
Author(s):  
Bárbara Rojas ◽  
Felipe Suárez-Vega ◽  
Susana Saez-Aguayo ◽  
Patricio Olmedo ◽  
Baltasar Zepeda ◽  
...  

The use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear. The current study investigated the effects of pre-anthesis applications (BBCH15 and BBCH55 stages) of CPPU on ‘Thompson Seedless’ berry firmness at harvest through a combination of cytological, morphological, and biochemical analyses. Ovaries in CPPU-treated plants presented morphological changes related to cell division and cell wall modification at the anthesis stage (BBCH65). Moreover, immunofluorescence analysis with monoclonal antibodies 2F4 and LM15 against pectin and xyloglucan demonstrated that CPPU treatment resulted in cell wall modifications at anthesis. These early changes have major repercussions regarding the hemicellulose and pectin cell wall composition of mature fruits, and are associated with increased calcium content and a higher berry firmness at harvest.


2021 ◽  
Vol 22 (23) ◽  
pp. 12854
Author(s):  
Yan Lin ◽  
Guoxuan Liu ◽  
Yingbing Xue ◽  
Xueqiong Guo ◽  
Jikai Luo ◽  
...  

The membrane-bound NAC transcription (NTL) factors have been demonstrated to participate in the regulation of plant development and the responses to multiple environmental stresses. This study is aimed to functionally characterize soybean NTL transcription factors in response to Al-toxicity, which is largely uncharacterized. The qRT-PCR assays in the present study found that thirteen out of fifteen GmNTL genes in the soybean genome were up-regulated by Al toxicity. However, among the Al-up-regulated GmNTLs selected from six duplicate gene pairs, only overexpressing GmNTL1, GmNTL4, and GmNTL10 could confer Arabidopsis Al resistance. Further comprehensive functional characterization of GmNTL4 showed that the expression of this gene in response to Al stress depended on root tissues, as well as the Al concentration and period of Al treatment. Overexpression of GmNTL4 conferred Al tolerance of transgenic Arabidopsis in long-term (48 and 72 h) Al treatments. Moreover, RNA-seq assay identified 517 DEGs regulated by GmNTL4 in Arabidopsis responsive to Al stress, which included MATEs, ALMTs, PMEs, and XTHs. These results suggest that the function of GmNTLs in Al responses is divergent, and GmNTL4 might confer Al resistance partially by regulating the expression of genes involved in organic acid efflux and cell wall modification.


2021 ◽  
Author(s):  
Arthur Cross ◽  
John Baijun ◽  
Robbie Waugh ◽  
Agnieszka Golicz ◽  
Mohammad Pourkheirandish

Abstract One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene-duplication.


2021 ◽  
Author(s):  
Meng Lin ◽  
Pengfei Qiao ◽  
Susanne Matschi ◽  
Miguel Vasquez ◽  
Guillaume P. Ramstein ◽  
...  

The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association study (GWAS/TWAS) to identify candidate genes putatively regulating variation in leaf gc. Of the 22 plausible candidate genes identified, five were predicted to be involved in cuticle precursor biosynthesis and export, two in cell wall modification, nine in intracellular membrane trafficking, and seven in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for gc, confirming the association between gc and ISTL1 in a haplotype-based association analysis. The findings of this study provide novel insights into the role of regulatory variants in the development of the maize leaf cuticle, and will ultimately assist breeders to develop drought-tolerant maize for target environments.


Sign in / Sign up

Export Citation Format

Share Document