Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles

2003 ◽  
Vol 250 (1) ◽  
pp. 215-226 ◽  
Author(s):  
Yongmei Xu ◽  
Yumin Du
2012 ◽  
Vol 157 (3) ◽  
pp. 383-390 ◽  
Author(s):  
S. Al-Qadi ◽  
A. Grenha ◽  
D. Carrión-Recio ◽  
B. Seijo ◽  
C. Remuñán-López

2020 ◽  
Vol 859 ◽  
pp. 214-219
Author(s):  
Ekachai Dumkliang ◽  
Tanasait Ngawhirunpat ◽  
Theerasak Rojanarata ◽  
Prasopchai Patrojanasophon ◽  
Boonnada Pamornpathomkul ◽  
...  

In this study, 6-maleimidohexanoic acid grafted chitosan nanoparticles (MHA-CS NPs) were prepared and evaluated the efficiency of intranasal protein delivery as compared with well-known chitosan nanoparticles (CS NPs). Fluorescein isothiocyanate labelled with bovine serum albumin (FITC-BSA) was used as a model protein. The results indicated that both CS NPs and MHA-CS NPs were positively charged NPs before and after protein loading. The condition for optimal protein loading was 1:6 mass ratio of protein/NPs at 1 h incubation period. The optimal formulations of CS NPs and MHA-CS NPs were evaluated on porcine mucosa as ex vivo. The mucoadhesive and permeation properties of FITC-BSA loaded MHA-CS NPs showed a greater than FITC-BSA loaded CS NPs and FITC-BSA solution, respectively. These ex vivo studies present the potential of MHA-CS NPs as a novel carrier for intranasal protein delivery that will be a candidate for in vivo study.


2007 ◽  
Vol 121-123 ◽  
pp. 751-754 ◽  
Author(s):  
Garnpimol C. Ritthidej ◽  
W. Pichayakorn ◽  
Chulalongkorn Kusonwiriyawong ◽  
V. Lipipun

The purpose of this study was to prepare chitosan nanoparticles (CS NP) for controlled protein delivery. Two techniques, simple ionotropic gelation (method [I]) and w/o/w emulsion solvent evaporation containing ionotropic gelation (method [II]), were used to prepare CS NP. Tripolyphosphate (TPP) and Eudragit L100-55 (Eud) were used as anionic agents to form complex with cationic chitosan. Bovine serum albumin (BSA) was encapsulated into NP. The morphological characteristics, particle size and size distribution, protein entrapment efficiency, zeta potential, in vitro release, protein secondary structure and its integrity were investigated. The results showed that CS NP could be prepared by appropriate cationic and anionic ratios in both methods. Excess anionic agents resulted in particle aggregation of micron size. The median sizes of particles were between 0.127-0.273 mcm with method [I] provided the smallest size. The 0.02-0.10% BSA loaded preparations showed the same particle sizes and size distributions as blank preparations. SEM photomicrographs revealed that the obtained NP were spherical. Protein entrapment efficiency was between 47-84% and increased when decreasing the percentage of drug loading. The method [II] with TPP exhibited the highest protein entrapment efficiency, following by the method [II] with Eud and method [I] with TPP, respectively. The zeta potentials were positive. Prolonged in vitro protein release profiles were observed from all preparations of CS NP. After 10 days, the release was between 53-72%. Circular dichroism and SDS-polyaceylamide gel electrophoresis techniques confirmed that these processes did not have any destructive effect on the protein structure. Therefore these preparation techniques could be used to encapsulate water-soluble drugs, proteins, DNA, or antigens into CS NP as effective delivery carriers.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Hong-liang Zhang ◽  
Si-hui Wu ◽  
Yi Tao ◽  
Lin-quan Zang ◽  
Zheng-quan Su

The objective of this study was to investigate the potential of water soluble chitosan as a carrier in the preparation of protein-loaded nanoparticles. Nanoparticles were prepared by ionotropic gelation of water-soluble chitosan (WSC) with sodium tripolyphosphate (TPP). Bovine serum albumin (BSA) was applied as a model drug. The size and morphology of the nanoparticles were investigated as a function of the preparation conditions. The particles were spherical in shape and had a smooth surface. The size range of the nanoparticles was between 100 and 400 nm. Result of the in vitro studies showed that the WSC nanoparticles enhance and prolong the intestinal absorption of BSA. These results also indicated that WSC nanoparticles were a potential protein delivery system.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1226 ◽  
Author(s):  
Kuo-Yu Chen ◽  
Si-Ying Zeng

Various amounts of 2-((acryloyloxy)ethyl)trimethylammonium chloride were grafted onto chitosan (CS) via redox polymerization method to obtain water-soluble quaternized CS (QCS). The QCS nanoparticles loaded with bovine serum albumin (BSA) were then produced by ionic gelation with tripolyphosphate (TPP) and further covalently cross-linked with genipin. The formation of QCS nanoparticles was optimized as a function of monomer grafting yield, QCS/TPP weight ratio, and QCS/genipin weight ratio by Box-Behnken design and response surface methodology. The results showed that QCS nanoparticles prepared with a grafting yield of 50%, QCS/TPP weight ratio of 7.67, and QCS/genipin weight ratio of 60 had a particle size of 193.68 ± 44.92 nm, polydispersity of 0.232, zeta potential of +23.97 mV and BSA encapsulation efficiency of 46.37 ± 2.89%, which were close to the predicted values from mathematical models. In vitro drug release studies at pH 1.2 and pH 7.4 exhibited that the release rate of BSA was significantly decreased and the release period was significantly prolonged after QCS nanoparticles cross-linking with genipin. Therefore, QCS nanoparticles cross-linked with TPP/genipin dual cross-linkers may be a promising protein drug carrier for a prolonged and sustained delivery.


2008 ◽  
Vol 349 (1-2) ◽  
pp. 226-233 ◽  
Author(s):  
Fu Chen ◽  
Zhi-Rong Zhang ◽  
Fang Yuan ◽  
Xuan Qin ◽  
Minting Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document