scholarly journals Preparation and Characterization of Water-Soluble Chitosan Nanoparticles as Protein Delivery System

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Hong-liang Zhang ◽  
Si-hui Wu ◽  
Yi Tao ◽  
Lin-quan Zang ◽  
Zheng-quan Su

The objective of this study was to investigate the potential of water soluble chitosan as a carrier in the preparation of protein-loaded nanoparticles. Nanoparticles were prepared by ionotropic gelation of water-soluble chitosan (WSC) with sodium tripolyphosphate (TPP). Bovine serum albumin (BSA) was applied as a model drug. The size and morphology of the nanoparticles were investigated as a function of the preparation conditions. The particles were spherical in shape and had a smooth surface. The size range of the nanoparticles was between 100 and 400 nm. Result of the in vitro studies showed that the WSC nanoparticles enhance and prolong the intestinal absorption of BSA. These results also indicated that WSC nanoparticles were a potential protein delivery system.

2017 ◽  
Vol 4 (1) ◽  
pp. 94-99
Author(s):  
Syamsul Falah ◽  
Sulistiyani Sulistiyani ◽  
Dimas Andrianto

Nanoparticles-based drug delivery has been recognized to improve the solubility of poorly water-soluble drugs, prolong the half-life of drug systematic circulation by reducing immunogenicity, and releases drugs at a sustain rate. The present study reports on the characterization of mahogany bark extract-loaded chitosan nanoparticles and their antioxidant activity.  Mahogany bark meal was extracted in boiled water for four hours.  Chitosan-sodium tripolyphosphate (STPP) nanospheres were sonicated with ultrasonicator to obtain chitosan-STTP nanocapsules for 30 and 60 min and then were dried with spray dryer. The chitosan-STPP nanocapsules loaded by mahogany extract were then analysed for surface morphology and physical state by scanning electron microscope (SEM) and X ray diffraction (XRD), respectively. Antioxidant activity of the nanoparticles was evaluated by scavenging the 1,1-diphenyl-2-picrylhydrazyl (DPPH) using free radical method. Based on SEM data, the nanoparticle shapes were viewed to adhere to spherical shape. Spherical chitosan-STTP nanoparticles loaded with mahogany bark extract were obtained in the size range of 480 ~ 2000 nm and 240 ~ 1000 nm for 30 and 60 min of ultrasonication time, respectively. The antioxidant activity of the nanoparticles was lower than that of the native mahogany bark extract. 


2007 ◽  
Vol 121-123 ◽  
pp. 751-754 ◽  
Author(s):  
Garnpimol C. Ritthidej ◽  
W. Pichayakorn ◽  
Chulalongkorn Kusonwiriyawong ◽  
V. Lipipun

The purpose of this study was to prepare chitosan nanoparticles (CS NP) for controlled protein delivery. Two techniques, simple ionotropic gelation (method [I]) and w/o/w emulsion solvent evaporation containing ionotropic gelation (method [II]), were used to prepare CS NP. Tripolyphosphate (TPP) and Eudragit L100-55 (Eud) were used as anionic agents to form complex with cationic chitosan. Bovine serum albumin (BSA) was encapsulated into NP. The morphological characteristics, particle size and size distribution, protein entrapment efficiency, zeta potential, in vitro release, protein secondary structure and its integrity were investigated. The results showed that CS NP could be prepared by appropriate cationic and anionic ratios in both methods. Excess anionic agents resulted in particle aggregation of micron size. The median sizes of particles were between 0.127-0.273 mcm with method [I] provided the smallest size. The 0.02-0.10% BSA loaded preparations showed the same particle sizes and size distributions as blank preparations. SEM photomicrographs revealed that the obtained NP were spherical. Protein entrapment efficiency was between 47-84% and increased when decreasing the percentage of drug loading. The method [II] with TPP exhibited the highest protein entrapment efficiency, following by the method [II] with Eud and method [I] with TPP, respectively. The zeta potentials were positive. Prolonged in vitro protein release profiles were observed from all preparations of CS NP. After 10 days, the release was between 53-72%. Circular dichroism and SDS-polyaceylamide gel electrophoresis techniques confirmed that these processes did not have any destructive effect on the protein structure. Therefore these preparation techniques could be used to encapsulate water-soluble drugs, proteins, DNA, or antigens into CS NP as effective delivery carriers.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1226 ◽  
Author(s):  
Kuo-Yu Chen ◽  
Si-Ying Zeng

Various amounts of 2-((acryloyloxy)ethyl)trimethylammonium chloride were grafted onto chitosan (CS) via redox polymerization method to obtain water-soluble quaternized CS (QCS). The QCS nanoparticles loaded with bovine serum albumin (BSA) were then produced by ionic gelation with tripolyphosphate (TPP) and further covalently cross-linked with genipin. The formation of QCS nanoparticles was optimized as a function of monomer grafting yield, QCS/TPP weight ratio, and QCS/genipin weight ratio by Box-Behnken design and response surface methodology. The results showed that QCS nanoparticles prepared with a grafting yield of 50%, QCS/TPP weight ratio of 7.67, and QCS/genipin weight ratio of 60 had a particle size of 193.68 ± 44.92 nm, polydispersity of 0.232, zeta potential of +23.97 mV and BSA encapsulation efficiency of 46.37 ± 2.89%, which were close to the predicted values from mathematical models. In vitro drug release studies at pH 1.2 and pH 7.4 exhibited that the release rate of BSA was significantly decreased and the release period was significantly prolonged after QCS nanoparticles cross-linking with genipin. Therefore, QCS nanoparticles cross-linked with TPP/genipin dual cross-linkers may be a promising protein drug carrier for a prolonged and sustained delivery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reham Mokhtar Aman ◽  
Randa A. Zaghloul ◽  
Marwa S. El-Dahhan

AbstractAllantoin (ALL) is a phytochemical possessing an impressive array of biological activities. Nonetheless, developing a nanostructured delivery system targeted to augment the gastric antiulcerogenic activity of ALL has not been so far investigated. Consequently, in this survey, ALL-loaded chitosan/sodium tripolyphosphate nanoparticles (ALL-loaded CS/STPP NPs) were prepared by ionotropic gelation technique and thoroughly characterized. A full 24 factorial design was adopted using four independently controlled parameters (ICPs). Comprehensive characterization, in vitro evaluations as well as antiulcerogenic activity study against ethanol-induced gastric ulcer in rats of the optimized NPs formula were conducted. The optimized NPs formula, (CS (1.5% w/v), STPP (0.3% w/v), CS:STPP volume ratio (5:1), ALL amount (13 mg)), was the most convenient one with drug content of 6.26 mg, drug entrapment efficiency % of 48.12%, particle size of 508.3 nm, polydispersity index 0.29 and ζ-potential of + 35.70 mV. It displayed a sustained in vitro release profile and mucoadhesive strength of 45.55%. ALL-loaded CS/STPP NPs (F-9) provoked remarkable antiulcerogenic activity against ethanol-induced gastric ulceration in rats, which was accentuated by histopathological, immunohistochemical (IHC) and biochemical studies. In conclusion, the prepared ALL-loaded CS/STPP NPs could be presented to the phytomedicine field as an auspicious oral delivery system for gastric ulceration management.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 449
Author(s):  
Ahmed M. Omer ◽  
Zyta M. Ziora ◽  
Tamer M. Tamer ◽  
Randa E. Khalifa ◽  
Mohamed A. Hassan ◽  
...  

An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.


Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


Sign in / Sign up

Export Citation Format

Share Document