Effects of power system parameters on critical clearing time: comprehensive analysis

1999 ◽  
Vol 49 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Atif Z Khan
Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


Author(s):  
Raja Nivedha. R ◽  
Sreevidya. L ◽  
V. Geetha ◽  
R. Deepa

The main objective of this paper is to improve the critical clearing time of the Steel Plant 35 MW Turbo generator. In order to enhance the transient behavior of the system, Power System Stabilizer is added so that proper damping is done. Damping intra area and inter area oscillations are critical to optimal power flow and stability on a system. Power system stabilizer is an effective damping device, as they provide auxiliary control signals to the excitation system of the generator. Transient stability analysis was carried out for the Steel plant. The three phase to ground and line to ground fault was simulated. The critical clearing time was found to be more when Power System Stabilizer was added and when Power System Stabilizer was not added the critical clearing time has considerably reduced.


Sign in / Sign up

Export Citation Format

Share Document