Effects of El Niño 1982-83 on Benthos, Fish and Fisheries off the South American Pacific Coast

Author(s):  
Wolf E. Arntz ◽  
Juan Tarazona
2018 ◽  
Vol 38 (5) ◽  
pp. 2153-2166 ◽  
Author(s):  
Alexandra Amaro de Lima ◽  
Rita Valéria Andreoli ◽  
Mary Toshie Kayano

2016 ◽  
Vol 37 (3) ◽  
pp. 1374-1390 ◽  
Author(s):  
Rita Valéria Andreoli ◽  
Suzana Soares de Oliveira ◽  
Mary Toshie Kayano ◽  
Juarez Viegas ◽  
Rodrigo Augusto Ferreira de Souza ◽  
...  
Keyword(s):  
El Niño ◽  
El Nino ◽  

2006 ◽  
Vol 6 ◽  
pp. 283-287 ◽  
Author(s):  
G. A. M. Silva ◽  
T. Ambrizzi

Abstract. The impact of the maximum convection location over eastern and central Equatorial Pacific over the intensity and positioning of the South American Low-Level Jet east of the Andes (SALLJ) during the austral summer was investigated. The Bonner criteria 1 was applied to the NCEP-NCAR circulation fields during the El Niño of 1997/1998 and 2002/2003 to identify the SALLJ episodes. The composites of the atmospheric circulation over the South America during El Niño events showed that the SALLJ can be influenced by small displacements of the quasi-stationary Rossby waves position. During the strong El Niño event of 1997/1998 the SALLJ is maintained by the eastern trade winds. A low-level anomalous anticyclonic circulation over the central part of Brazil enhanced the wind in the nucleus of the jet and displaced its axis to the Northern Argentina and South of Brazil. However, the northern trade winds seem to maintain the SALLJ during the weak El Niño of 2002/2003. The jet was weaker and displaced more southeastward of Brazil than during the strong event.


Author(s):  
Andrea Corredor Acosta ◽  
Alberto Acosta ◽  
Phillipe Gaspar ◽  
Beatriz Calmettes

Climatic anomalies have changed the ocean circulation pattern and thus the demographic connectivity. However, in many geographical regions there is insufficient evidence of this change. Therefore, comparisons were made between neutral years and years of El Niño and La Niña with moderate intensity, for the North Equatorial Counter Current (NECC), the South Equatorial Current (SEC), the Coastal Current (CoaC) and the main anticyclonic eddy in the Panama Bight. Daily dynamics topography data of the Maps of Absolute Dynamic Topography (MADT) provided by AVISO and daily wind stress data provide by the European Centre for Medium Range Weather (ECMWF) were used to calculate the speed of surface currents (multi-year, quarterly average), during months with the highest number of eggs and larvae released by the species with a pelagic phase (Sept-Nov). It was found that the speed magnitude for the three oceanic currents was statistically different among the compared events, except for the anticyclonic eddy; obtaining higher values of speed for neutral years in relation to years with El Niño or La Niña for the NECC, for the SEC higher values for La Niña years, followed by neutral years and a moderate El Niño years; for the CoaC higher velocity for neutral and La Niña years but the lowest for El Niño years; and a tendency of higher values in La Niña years for the anticyclonic eddy. Additionally, the number of eddies increased in moderate El Niño years. The results suggest that the decreased velocity of the NECC and the potential barriers created by the cyclonic eddies and the anticyclonic eddy near the South American coast could diminish the passive dispersal of larvae and the potential functional connectivity between the Western, Central and Eastern Tropical Pacific. Therefore, there are implications at the evolutionary, biogeographic, and ecologic levels (dispersion rates and population rescue effect). In contrast, during La Niña the SEC could favor teleplanktonic larval transport to the Central Pacific, material which is exported from the South American coast by CoaC, aided by the anticyclonic eddy. In conclusion, anomalous climatic events alter the velocity of oceanic currents in the Panama Bight; consequently these could change the functional potential connectivity from September to November.


Author(s):  
Maximilian Gelbrecht ◽  
Niklas Boers ◽  
Jürgen Kurths

AbstractUnderstanding the variability of low-level atmospheric circulation regimes is key for understanding the dynamics of monsoon systems. The South American Monsoon is characterized by strong year-long trade winds that are channeled southward into the South American Low-Level Jet after crossing the Amazon basin, which in turn is elementary for the moisture transport to Southern South America. In this study, we utilize streamflow wind networks, a type of climate networks that tracks the local flow of the wind field, together with the analysis of composites of wind, precipitation, and geopotential height fields, to investigate the variability of the South American low-level circulation. The streamflow wind networks are used here as they are able to directly track the wind flow and encode its spatiotemporal characteristics in their topology. We focus on intraseasonal variations in terms of active and break monsoon phases on the one hand, and on the interannual variability in terms of the impacts of the El Niño-Southern Oscillation on the other hand. Our findings highlight the importance of the South American Low-Level Jet, its spatial position and variability. Our study reveals the relation of the active and break regimes to anomalous high- and low-pressure systems over the southern Atlantic that are connected to Rossby wave trains from the southern Pacific, as well as the impact of these regimes on the cross-equatorial low-level flow. In addition, the streamflow networks that we use demonstrate significant shifts of the dominant wind flow pattern during El Niño and La Niña episodes.


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Héctor Nava ◽  
Norma López ◽  
Pedro Ramírez‐García ◽  
Elizabeth Garibay‐Valladolid

Sign in / Sign up

Export Citation Format

Share Document