Ion kinetic energy distributions and their relationship to fundamental plasma parameters in a radio frequency glow discharge source

1997 ◽  
Vol 52 (11) ◽  
pp. 1627-1644 ◽  
Author(s):  
Steven J. Christopher ◽  
R. Yuancai Ye ◽  
Kenneth Marcus
1995 ◽  
Vol 49 (7) ◽  
pp. 917-926 ◽  
Author(s):  
Paula R. Cable ◽  
R. Kenneth Marcus

Radio-frequency glow discharge (rf-GD) sources produce an abundance of both atoms and ions. For the mass spectrometric application of the glow discharge technique, knowledge of the ion kinetic energies is required to optimize extraction and focusing of ions from the source region into the analyzer. This paper details kinetic energies experimentally determined with the use of the “retarding potential” method. For this study, the analyzer quadrupole of a double-quadrupole mass spectrometer was positively biased to act as a repeller. Ion kinetic energies (IKEs) determined for a variety of discharge and analyzer operating conditions ranged from 12.5 eV to 25.0 eV for 63Cu+. Kinetic energy measurements were confirmed from ion trajectory simulations and follow closely the experimental values for identical analyzer conditions and initial IKEs. Results of this study indicate that the conditions under which ions are formed (plasma conditions) affect IKEs and energy spreads to a greater extent than analyzer parameter variations. Different from atmospheric plasma sources, IKEs for rf-GD species do not vary as a function of ion mass/identity. Evidence is also given in support of a slight mass biasing owing to the transmission properties of double-quadrupole analyzers. The findings detailed herein demonstrate the effects of rf modulation on both ion kinetic energy values and distributions.


1996 ◽  
Vol 50 (3) ◽  
pp. 366-376 ◽  
Author(s):  
Mark Parker ◽  
R. Kenneth Marcus

A power-modulated (pulsed), radio-frequency glow discharge source by atomic absorption spectrophotometry (rf-GD-AAS) atomizer was used to evaluate the roles of applied power, pressure, orifice diameter, duty cycle, and power-on time in the production of gas-phase sample atoms. As expected, the response of the modulated rf-GD-AAS source generally followed the same trends as those exhibited by the more common continuous-powering scheme. The effects of discharge power and pressure on the observed plasma emission and absorbance transients are presented. Use of small duty cycles and higher instantaneous powers, thus keeping the same overall average power as in the continuous mode, was shown to increase the production of ground-state atoms. However, using very high instantaneous powers may more efficiently populate excited states of the atomic species, thus decreasing the observed absorption signal for resonant transitions. Individual pulse transients were shown to be distorted if the plasma “on” times approached periods down to 2 ms. Plasma stabilization times for measurements taken in the “dark” portion of the pulse cycle (i.e., after pulse termination) were comparable to those obtained in the continuous mode (on the order of a few seconds) with the use of the same source and sample. Calibration curves were used to investigate the analytical utility of different temporal regions of the absorption transients with comparisons made between the plasma “on” and “off” portions of the cycle in the quantification of continuous plasma operation.


Sign in / Sign up

Export Citation Format

Share Document