continuous mode
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 142)

H-INDEX

35
(FIVE YEARS 7)

2021 ◽  
Vol 21 (2) ◽  
pp. 128
Author(s):  
Ali Rospawan ◽  
Joni Welman Simatupang

In application of lead-acid batteries for electrical vehicle applications, 48 V of four 12 V batteries in a series configuration are required. However, the battery stack is repeatedly charged and discharged during operation. Hence, differences in charging and discharging speeds may result in a different state-of-charge of battery cells. Without proper protection, it may cause an excessive discharge that leads to premature degradation of the battery. Therefore, a lead-acid battery requires a battery management system to extend the battery lifetime. Following the LTC3305 balancing scheme, the battery balancing circuit with auxiliary storage can employ an imbalance detection algorithm for sequential battery. It happens by comparing the voltage of a battery on the stack and the auxiliary storage. In this paper, we have replaced the function of LTC3305 by a NUCLEO F767ZI microcontroller, so that the balancing process, the battery voltage, the drawn current to or from the auxiliary battery, and the surrounding temperature can be fully monitored. The prototype of a microcontroller-based lead-acid battery balancing system for electrical vehicle application has been fabricated successfully in this work. The batteries voltage monitoring, the auxiliary battery drawn current monitoring, the overcurrent and overheat protection system of this device has also successfully built. Based on the experimental results, the largest voltage imbalance is between battery 1 and battery 2 with a voltage imbalance of 180 mV. This value is still higher than the target of voltage imbalance that must be lower than 12.5 mV. The balancing process for the timer mode operation is faster 1.5 times compared to the continuous mode operation. However, there were no overcurrent or overtemperature occurred during the balancing process for both timer mode and continuous mode operation. Furthermore, refinement of this device prototype is required in the future to improve the performance significantly.


Author(s):  
Oleksandr Leonidovich Turovsky ◽  
Vadym Vlasenko ◽  
Nataliia Rudenko ◽  
Oleksandr Golubenko ◽  
Oleh Kitura ◽  
...  

The use in radio communication systems of phase modulation of a signal intended for the transmission of useful information in a continuous mode creates the problem of frequency uncertainty of the received signal by frequency.In practice, it is not possible to implement frequency estimation in the conditions of chat uncertainty of the signal in the channel with low energy of the signal received in the continuous mode. Therefore, the estimation of the carrier frequency offset of the signal received relative to the nominal value is carried out before other synchronization procedures are included, namely: phase synchronization and clock synchronization. The paper generalizes the procedure and forms a two-step procedure for calculating the carrier frequency of the phase-modulated signal of a radio communication system for data transmission in a continuous mode, taking into account the condition of uncertainty of all signal parameters. Achieving the minimum observation interval in the given order of calculation of the carrier frequency is ensured by the use of the fast Fourier transform function. In order to analyze the effectiveness of this procedure, the process of estimating the carrier frequency of the phase-modulated signal of the radio communication system during data transmission in continuous mode and functional dependences of the maximum frequency in the signal spectrum and the minimum variance of carrier frequency estimation. This procedure allows a two-stage assessment of the carrier frequency according to the rule of maximum likelihood, taking into account the condition of uncertainty of all parameters of the signal received by the satellite communication system in a continuous mode with a minimum observation interval. Achieving the minimum observation interval in the given order of carrier frequency estimation is ensured by using the fast Fourier transform function and two estimation steps. The analysis of the efficiency of the estimation of the specified order was carried out on the basis of comparison of a ratio of the received minimum variance of an estimation of a carrier frequency and theoretically possible border of the minimum variance.


Author(s):  
Дмитрий Петрович Бернацкий ◽  
Виктор Георгиевич Павлов

Полевые электронные эмиттеры в форме металлического острия с пленкой углерода на поверхности обладают рядом перспективных эксплуатационных свойств. Характеристики эмиттера зависят от фазового состава, толщины и однородности пленки. Определение параметров пленок толщиной в один или несколько моноатомных слоев представляет определённые трудности. В данной работе образование и характеристики углеродных наноструктур на поверхности полевых эмиттеров из иридия и рения исследуются с помощью полевой десорбционной микроскопии непрерывного режима. На полевых десорбционных изображениях области углеродных наноструктур проявляются в виде локальных вспышек (лавинообразная десорбция). При покадровом анализе видеозаписей вспышек обнаружено несколько стадий формирования вспышек и выявлены различия в протекании десорбции с углеродных наноструктур на иридии и на рении. Обнаруженные различия объясняются образованием на иридии однослойного, а на рении многослойного графена. Десорбционные изображения выявляют неоднородности и локальные различия толщины пленки. Показано, что полевая десорбционная микроскопия непрерывного режима позволяет определять закономерности формирования полевых десорбционных изображений различных углеродных наноструктур, в частности, однослойного и многослойного графена на поверхности полевого эмиттера, и проводить диагностику поверхности после науглероживания и контролировать однородность получаемого покрытия. Получаемые данные полезны для разработки технологии эффективных полевых электронных эмиттеров. Field electron emitters in the form of a metal tip with a carbon film on the surface have a number of promising operational properties. The characteristics of the emitter depend on the phase composition, thickness and uniformity of the film. Determining the parameters of films with a thickness of one or more monoatomic layers presents certain difficulties. In this paper, the formation and characteristics of carbon nanostructures on the surface of field emitters made of iridium and rhenium are studied using continuous-mode field desorption microscopy. In the field desorption images, the regions of carbon nanostructures appear as local flashes (avalanche-like desorption). Frame-by-frame analysis of flash video recordings revealed several stages of the flash formation and revealed differences in the desorption from carbon nanostructures on iridium and rhenium. The found differences are explained by formation of the single-layer graphene on iridium and a multilayer graphene on rhenium. Desorption images reveal inhomogeneities and local differences in the film thickness. It is shown that continuous-mode field desorption microscopy makes it possible to determine the regularities of formation of the field desorption images of various carbon nanostructures, in particular, the single-layer and multilayer graphene on the surface of the field emitter, and to diagnose the surface after carburization. Besides, control the uniformity of the resulting coating is possible. The obtained data are useful for developing technology of the effective field electronic emitters.


2021 ◽  
Vol 6 (2(62)) ◽  
pp. 6-9
Author(s):  
Oksana Mulesa ◽  
Yurii Bilak ◽  
Yevhenii Kykyna ◽  
Dmytro Ferens

The research is devoted to the development of rules for the coordination of decisions in multichannel decision-making systems. Systems are considered that in an automated continuous mode process incoming signals from different channels and, on their basis, make the final decision. One of the most problematic stages in the operation of such systems is their own coordination of solutions received from different channels. There may be cases where different channels provide signals with opposite values. Then the choice of the decisive solution should depend on the reliability of the channels under consideration. The object of research is the processes that take place during the coordination of decisions in multichannel decision-making systems. The development and implementation of such systems will allow in an automated mode to generalize the solution obtained through different channels, to increase the reliability and efficiency of the systems as a whole. During the study, the following methods were used: – a systematic approach – when analyzing the structure and functioning of multichannel one-stage decision-making systems; – method of mathematical modeling – for formalizing the problem of coordinating decisions in multichannel decision-making systems; – method of analysis – when developing rules for agreeing decisions. The authors analyzed the structure of a one-stage multichannel decision-making system. The case is considered when the channels, based on the initial data entering the system, decide on the presence or absence of a certain fact. That is, the channels send signals from the set {True, False}. In the study, decision rules for the coordination of decisions were developed, taking into account not only the signals received from different channels, but also the reliability of the channels themselves. As is usual in decision theory, different rules can give different results for the same initial data. The choice of the decision rule depends on the decision maker, its personal psychological qualities and the scope of the system.


Author(s):  
Houda Boustila ◽  
Yasmine Boutillara ◽  
Leticia Fernandez Velasco ◽  
Ali Djellali ◽  
Sana Tazibet

2021 ◽  
pp. 126407
Author(s):  
Yeqing Li ◽  
Yinjun Liu ◽  
Ximeng Wang ◽  
Sen Luo ◽  
Dongfang Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document