Simultaneous determination of benazepril hydrochloride and hydrochlorothiazide in tablets by second-order derivative spectrophotometry

1999 ◽  
Vol 21 (2) ◽  
pp. 257-265 ◽  
Author(s):  
I.E Panderi
2014 ◽  
Vol 64 (4) ◽  
pp. 433-446 ◽  
Author(s):  
Mohamed M. Hefnawy ◽  
Mostafa S. Mohamed ◽  
Mohammed A. Abounassif ◽  
Amer M. Alanazi ◽  
Gamal A. E. Mostafa

Abstract High performance liquid chromatography (HPLC) and second-order derivative spectrophotometry have been used for simultaneous determination of pravastatin (PS) and fenofibrate (FF) in pharmaceutical formulations. HPLC separation was performed on a phenyl HYPERSIL C18 column (125 mm × 4.6 mm i.d., 5 μm particle diameter) in the isocratic mode using a mobile phase acetonitrile/0.1 % diethyl amine (50:50, V/V, pH 4.5) pumped at a flow rate of 1.0 mL min-1. Measurement was made at 240 nm. Both drugs were well resolved on the stationary phase, with retention times of 2.15 and 5.79 min for PS and FF, respectively. Calibration curves were linear (R = 0.999 for PS and 0.996 for FF) in the concentration range of 5-50 and 20-200 µg mL-1 for PS and FF, respectively. Pravastatin and fenofibrate were quantitated in combined preparations also using the second-order derivative response at 237.6 and 295.1 nm for PS and FF, respectively. Calibration curves were linear, with the correlation coefficient R = 0.999 for pravastatin and fenofibrate, in the concentration range of 5-20 and 3-20 µg mL-1 for PS and FF, respectively. Both methods were fully validated and compared, the results confirmed that they were highly suitable for their intended purpose.


2004 ◽  
Vol 87 (4) ◽  
pp. 847-851 ◽  
Author(s):  
Dorota Kowalczuk ◽  
Hanna Hopkała

Abstract A new second-order-derivative spectrophotometric method using zero-crossing technique measures quinapril (QUI) and hydrochlorothiazide (HYD) in 2-component mixtures. The procedure does not require prior separation of components from the sample. QUI was determined at a wavelength of 211.6 nm (zero-crossing wavelength point of HYD). Similarly, HYD was measured at 270.8 nm (zero-crossing wavelength point of QUI). Calibration graphs were constructed over the concentration range of 4.0 to 24.0 μ/mL for QUI and 2.5 to 15.0 μg/mL for HYD. Detection and quantitation limits were 0.85 and 2.5 μg/mL for QUI and 0.12 and 0.4 μg/mL for HYD, respectively. The accuracy (recovery 100.5–102%), precision (relative standard deviation less than 3.5% for QUI and 1.5% for HYD), selectivity, and sensitivity of the elaborated methods were satisfactory. The proposed method was applied successfully for the determination of both drugs in QUI-HYD tablets.


2014 ◽  
Vol 14 (5) ◽  
pp. 389-390
Author(s):  
Yan HAN ◽  
ZhiLiang YU ◽  
Jun WEN ◽  
TingTing ZHOU ◽  
ChunQuan SHENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document