Evaluation of amphotericin B and flucytosine in combination against Candida albicans and Cryptococcus neoformans using time-kill methodology

2001 ◽  
Vol 41 (3) ◽  
pp. 121-126 ◽  
Author(s):  
Douglas J. Keele ◽  
Veronica C. DeLallo ◽  
Russell E. Lewis ◽  
Erika J. Ernst ◽  
Michael E. Klepser
mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2000 ◽  
Vol 44 (4) ◽  
pp. 1108-1111 ◽  
Author(s):  
Erika J. Ernst ◽  
Michael E. Klepser ◽  
Michael A. Pfaller

ABSTRACT The postantifungal effect (PAFE) of fluconazole, MK-0991, LY303366, and amphotericin B was determined against isolates of Candida albicans and Cryptococcus neoformans. Concentrations ranging from 0.125 to 4 times the MIC were tested following exposure to the antifungal for 0.25 to 1 h. Combinations of azole and echinocandin antifungals (MK-0991 and LY303366) were tested againstC. neoformans. Fluconazole displayed no measurable PAFE against Candida albicans or Cryptococcus neoformans, either alone or in combination with either echinocandin antifungal. MK-0991, LY303366, and amphotericin B displayed a prolonged PAFE of greater than 12 h againstCandida spp. when tested at concentrations above the MIC for the organism and 0 to 2 h when tested at concentrations below the MIC for the organism.


2002 ◽  
Vol 46 (11) ◽  
pp. 3634-3636 ◽  
Author(s):  
Gordon Ramage ◽  
Kacy VandeWalle ◽  
Stefano P. Bachmann ◽  
Brian L. Wickes ◽  
José L. López-Ribot

ABSTRACT We have examined the in vitro activities of fluconazole, amphotericin B, and caspofungin against Candida albicans biofilms by time-kill methodology. Fluconazole was ineffective against biofilms. Killing of biofilm cells was suboptimal at therapeutic concentrations of amphotericin B. Caspofungin displayed the most effective pharmacokinetic properties, with ≥99% killing at physiological concentrations.


1998 ◽  
Vol 42 (11) ◽  
pp. 3018-3021 ◽  
Author(s):  
Elias K. Manavathu ◽  
Jessica L. Cutright ◽  
Pranatharthi H. Chandrasekar

ABSTRACT We investigated the antifungal activities of itraconazole and voriconazole on Aspergillus species by time kill studies, and the results were compared with those obtained forCandida species. Exposure of Aspergillus fumigatus conidia to varying concentrations (1.25 to 10 μg/ml) of itraconazole and voriconazole resulted in cellular death; the cytocidal effect was time and concentration dependent. In contrast, no killing of Candida albicans occurred in the presence of itraconazole and voriconazole at concentrations as high as 10 μg/ml, although candidal growth was inhibited compared to the drug-free control. Amphotericin B (1.25 to 10 μg/ml), on the other hand, killed both A. fumigatus and C. albicans. Similar results were obtained for non-A. fumigatus aspergilli and non-C. albicans Candida species. These observations indicate that both itraconazole and voriconazole are cytocidal agents for Aspergillus species but not for Candidaspecies, suggesting that azoles possess organism-dependent fungicidal activities.


1997 ◽  
Vol 41 (6) ◽  
pp. 1392-1395 ◽  
Author(s):  
M E Klepser ◽  
E J Wolfe ◽  
R N Jones ◽  
C H Nightingale ◽  
M A Pfaller

Time-kill curves were determined for three isolates of Candida albicans tested against fluconazole and amphotericin B at multiples of the MIC. Fluconazole produced fungistatic activity, with concentration-related growth effects observed over a narrow range of concentrations. Amphotericin B exhibited fungicidal activity, with enhancement of activity over a broader range of concentrations.


2017 ◽  
Vol 11 (4) ◽  
pp. 158-162 ◽  
Author(s):  
Lidiane de Oliveira ◽  
Dayane Cristina Silva Santos ◽  
Marilena dos Anjos Martins ◽  
Maria Walderez Szeszs ◽  
Marcia Souza Carvalho Melhem

2012 ◽  
Vol 56 (6) ◽  
pp. 3250-3260 ◽  
Author(s):  
Yabin Zhou ◽  
Ganggang Wang ◽  
Yutang Li ◽  
Yang Liu ◽  
Yu Song ◽  
...  

ABSTRACTThe increase in drug resistance and invasion caused by biofilm formation brings enormous challenges to the management ofCandidainfection. Aspirin's antibiofilm activityin vitrowas discovered recently. The spectrophotometric method and the XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide} reduction assay used for data generation make it possible to evaluate fungal biofilm growth accurately. The combined use of the most commonly used methods, the fractional inhibitory concentration index (FICI) and a newly developed method, the ΔEmodel, which uses the concentration-effect relationship over the whole concentration range instead of using the MIC index alone, makes the interpretation of results more reliable. As an attractive tool for studying the pharmacodynamics of antimicrobial agents, time-kill curves can provide detailed information about antimicrobial efficacy as a function of both time and concentration. In the present study,in vitrointeractions between aspirin (acetylsalicylic acid [ASA]) and amphotericin B (AMB) against planktonic cells and biofilm cells ofCandida albicansandC. parapsilosiswere evaluated by the checkerboard microdilution method and the time-kill test. Synergistic and indifferent effects were found for the combination of ASA and AMB against planktonic cells, while strong synergy was found against biofilm cells analyzed by FICI. The ΔEmodel gave more consistent results with FICI. The positive interactions in concentration were also confirmed by the time-kill test. Moreover, this approach also revealed the pharmacodynamics changes of ASA and synergistic action on time. Our findings suggest a potential clinical use for combination therapy with ASA and AMB to augment activity against biofilm-associated infections.


1999 ◽  
Vol 43 (5) ◽  
pp. 1034-1041 ◽  
Author(s):  
Robert S. Liao ◽  
Robert P. Rennie ◽  
James A. Talbot

ABSTRACT The processes involved in cell death are complex, and individual techniques measure specific fractions of the total population. The interaction of Candida albicans with amphotericin B was measured with fluorescent probes with different cellular affinities. These were used to provide qualitative and quantitative information of physiological parameters which contribute to fungal cell viability. SYBR Green I and 5,(6)-carboxyfluorescein were used to assess membrane integrity, and bis-(1,3-dibutylbarbituric acid)trimethine oxonol and 3,3-dihexyloxacarbocyanine iodide were used to evaluate alterations in membrane potential. The fluorescent indicators were compared with replication competency, the conventional indicator of viability. By using these tools, the evaluation of the response of C. albicans to amphotericin B time-kill curves delineated four categories which may represent a continuum between alive and dead. The data showed that replication competency (CFU per milliliter) as determined by conventional antifungal susceptibility techniques provided only an estimate of inhibition. Interpretation of fluorescent staining characteristics indicated that C. albicans cells which were replication incompetent after exposure to greater than 0.5 μg of amphotericin B per ml still maintained degrees of physiological function.


Sign in / Sign up

Export Citation Format

Share Document