fungistatic activity
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 46)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 473
Author(s):  
Daniela Gwiazdowska ◽  
Katarzyna Marchwińska ◽  
Krzysztof Juś ◽  
Pascaline Aimee Uwineza ◽  
Romuald Gwiazdowski ◽  
...  

The presence of Fusarium fungi and their toxic metabolites in agricultural crops contributes to significant quantitative and qualitative losses of crops, causing a direct threat to human and animal health and life. Modern strategies for reducing the level of fungi and mycotoxins in the food chain tend to rely on natural methods, including plant substances. Essential oils (EOs), due to their complex chemical composition, show high biological activity, including fungistatic properties, which means that they exhibit high potential as a biological plant protection factor. The aim of this study was to determine the fungistatic activity of three EOs against F. graminearum, and the reduction of mycotoxin biosynthesis in corn and wheat grain. All tested EOs effectively suppressed the growth of F. graminearum in concentrations of 5% and 10%. Cinnamon and verbena EOs also effectively reduced the ergosterol (ERG) content in both grains at the concentration of 1%, while at the 0.1% EO concentration, the reduction in the ERG amount depended on the EO type as well as on the grain. The degree of zearalenone (ZEA) reduction was consistent with the inhibition of ERG biosynthesis, while the reduction in deoxynivalenol (DON) was not consistent with this parameter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Ibrahim ◽  
Desigar Moodley ◽  
Cosmas Uche ◽  
Ernest Maboza ◽  
Annette Olivier ◽  
...  

AbstractThe aims of this study were to synthesize highly positively charged chitosan nanoparticles (Ch-Np) using the electrospraying technique, and to test their antimicrobial activity against endodontic pathogens, and cytotoxicity against fibroblast cells. Ch-Np were synthesized from low molecular weight chitosan (LMW-Ch) using the electrospraying technique, and characterized. The antimicrobial activity was evaluated against Streptococcus mutans, Enterococcus faecalis, and Candida albicans in their planktonic state using a Time-Kill Test performed by using broth micro-dilution technique, and against biofilm biomass using a microtiter plate biofilm assay. The cytotoxicity was evaluated using Balb/c 3T3 fibroblast cells with the standard MTT assay. Electrospraying of LMW-Ch produced Ch-Np with an average size of 200 nm, and a surface charge of 51.7 mV. Ch-Np completely eradicated S. mutans and E. faecalis in the planktonic state and showed fungistatic activity against C. albicans. Furthermore, it significantly reduced the biofilm biomass for all the tested microbial species [S. mutans (p = 0.006), E. faecalis (p < 0.0001), and C. albicans (p = 0.004)]. When tested for cytotoxicity using 3T3 cells, Ch-Np showed no cytotoxicity. In conclusion, the highly positively charged, colloidal dispersion of Ch-Np are effective as a biocompatible endodontic antimicrobial agent.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6906
Author(s):  
Yasmine Chakroun ◽  
Souheib Oueslati ◽  
Vessela Atanasova ◽  
Florence Richard-Forget ◽  
Manef Abderrabba ◽  
...  

Enniatins are mycotoxins produced by Fusarium species contaminating cereals and various agricultural commodities. The co-occurrence of these mycotoxins in large quantities with other mycotoxins such as trichothecenes and the possible synergies in toxicity could lead to serious food safety problems. Using the agar dilution method, Ammoides pusilla was selected among eight Tunisian plants for the antifungal potential of its essential oil (EO) on Fusarium avenaceum mycelial growth and its production of enniatins. Two EO batches were produced and analyzed by GC/MS-MS. Their activities were measured using both contact assays and fumigant tests (estimated IC50 were 0.1 µL·mL−1 and 7.6 µL·L−1, respectively). The A. pusilla EOs and their volatiles inhibited the germination of spores and the mycelial growth, showing a fungistatic but not fungicidal activity. The accumulation of enniatins was also significantly reduced (estimated IC50 were 0.05 µL·mL−1 for the contact assays and 4.2 µL·L−1 for the fumigation assays). The most active batch of EO was richer in thymol, the main volatile compound found. Thymol used as fumigant showed a potent fungistatic activity but not a significant antimycotoxigenic activity. Overall, our data demonstrated the bioactivity of A. pusilla EO and its high potential to control F. avenaceum and its enniatins production in agricultural commodities.


Author(s):  
Ayushi Mahajan ◽  
Lakhvir Kaur ◽  
Gurjeet Singh ◽  
RK Dhawan ◽  
Lovepreet Singh

Background: Luliconazole is a broad-spectrum antifungal agent with impactful fungicidal and fungistatic activity. It has shown exceptional potency against miscellaneous fungal strains like Candida, Aspergillus, Malassezia, Fusarium species and various dermatophytes. Objective: Luliconazole belongs to class Ⅱ of the Biopharmaceutical Classification System with low aqueous solubility. Although it is available conventionally as 1% w/v topical cream, it has limitations of lower skin permeation and shorter skin retention. Therefore, nanoformulations based on various polymers and nanostructure carriers can be employed to overcome the impediments regarding topical delivery and efficacy of luliconazole. Methods: In this review, we have tried to provide insight into the literature gathered from authentic web resources and research articles regarding recent research conducted on the subject of formulation development, patents, and future research requisites of luliconazole. Results: Nanoformulations can play a fundamental role in improving topical delivery by escalating dermal localization and skin penetration. Fabricating luliconazole into nanoformulations can overcome the drawbacks and can efficiently enhance its antimycotic activity. Conclusion: It has been concluded that luliconazole has exceptional potential in the treatment of various fungal infections, and therefore, it should be exploited to its maximum for its innovative application in the field of mycology.


Author(s):  
M. Sathish ◽  
D. Seeniammal ◽  
R. Poornima ◽  
J. Raghava Rao

Antimicrobial agents have been used in leather manufacturing to prevent leather products from microbial contamination. In this work, the antifungal activity of green solvent such as propylene carbonate was investigated against the mixed culture of fungi isolated from wet-blue using broth dilution/well diffusion. A concentration of 5% and above (propylene carbonate) showed effective antifungal activity against the mixed culture of fungi and the efficiency of propylene carbonate on the mixed culture increased with increasing concentration/volume. Propylene carbonate exhibited fungistatic activity against the mixed culture of fungi but it lost its activity after a certain period and fungal growth was observed again.  It was also found that 2% propylene carbonate in chrome tanning process effectively inhibited the fungal growth and the wet-blue can be preserved up to 30 days without any fungal attack.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6488
Author(s):  
Teresa Krzyśko-Łupicka ◽  
Sławomir Sokół ◽  
Monika Sporek ◽  
Anna Piekarska-Stachowiak ◽  
Weronika Walkowiak-Lubczyk ◽  
...  

The aim of the study was to determine the effectiveness of selected seven commercial essential oils (EsO) (grapefruit, lemongrass, tea tree (TTO), thyme, verbena, cajeput, and Litsea cubeba) on isolates of common Central European parasitic fungal species of Fusarium obtained from infected wheat kernels, and to evaluate the oils as potential natural fungicides. The study was conducted in 2 stages. At each stage, the fungicidal activity of EsO (with concentrations of 0.025; 0.05; 0.125; 0.25; 0.50; 1.0, and 2.0%) against Fusarium spp. was evaluated using the disc plate method and zones of growth inhibition were measured. At the first stage, the fungistatic activity of EsO was evaluated against four species of Fusarium from the Polish population (F. avenaceum FAPL, F. culmorum FCPL, F. graminearum FGPL and F. oxysporum FOPL). The correlation coefficient between the mycelial growth rate index (T) and the fungistatic activity (FA) was calculated. At the second stage, on the basis of the mycelium growth rate index, the effectiveness of the EsO in limiting the development of Fusarium isolates from the German population (F. culmorum FC1D, F. culmorum FC2D, F. graminearum FG1D, F. graminearum FG2D and F. poae FP0D) was assessed. The first and second stage results presented as a growth rate index were then used to indicate essential oils (as potential natural fungicides) effectively limiting the development of various common Central European parasitic species Fusarium spp. Finally, the sensitivity of four Fusarium isolates from the Polish population and five Fusarium isolates from the German population was compared. The data were compiled in STATISTICA 13.0 (StatSoft, Inc, CA, USA) at the significance level of 0.05. Fusarium isolates from the German population were generally more sensitive than those from the Polish population. The sensitivity of individual Fusarium species varied. Their vulnerability, regardless of the isolate origin, in order from the most to the least sensitive, is as follows: F. culmorum, F. graminearum, F. poae, F. avenaceum and F. oxysporum. The strongest fungicidal activity, similar to Funaben T, showed thyme oil (regardless of the concentration). Performance of citral oils (lemongrass and Litsea cubeba) was similar but at a concentration above 0.025%.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1088
Author(s):  
Dulce Alondra Cuevas-Acuña ◽  
Maribel Plascencia-Jatomea ◽  
Hisila del Carmen Santacruz-Ortega ◽  
Wilfrido Torres-Arreola ◽  
Josafat Marina Ezquerra-Brauer

Chitosan (85% deacetylated, viscosity > 400 MPa, and molecular weight of 570.3 kDa)/squid gelatin hydrolysates (SGH) were prepared by incorporating SGHs (10%, 20%, and 40%) into chitosan films. SGH were obtained from squid skin gelatin by hydrolysis with Alcalase. The effects of adding SGH on the physical, chemical structure, mechanical, degradability, antioxidant, and antifungal properties of the chitosan films were evaluated. Films containing SGH were opaquer and more colored than the reference. Scanning electron microscope imaging showed that the surface sections of the CH/SGH films were smooth and homogeneous, though a small amount of insoluble microparticles was observed. Atomic force microscopy indicated that the surface roughness of the chitosan films increased with the addition of SGH. Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy suggested an excellent compatibility of the components due to hydrogen bonding. The flexibility and in vitro degradability of the films increased as the SGH content increased. The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate acid and 1,1-diphenyl-2-picrylhydrazyl scavenging rate of films increased with the addition of SGH. Moreover, films containing 20% SGH improved the fungistatic activity against Aspergillus parasiticus of chitosan films. The chitosan/SGH composite films have the potential for use in food packaging.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1333
Author(s):  
Unai Caballero ◽  
Elena Eraso ◽  
Guillermo Quindós ◽  
Nerea Jauregizar

Treatment of invasive infections caused by Candida auris is challenging due to the limited therapeutic options. The combination of antifungal drugs may be an interesting and feasible approach to be investigated. The aim of this study was to examine the in vitro activity of amphotericin B in combination with anidulafungin or caspofungin against C. auris. In vitro static time–kill curve experiments were conducted for 48 h with different combinations of amphotericin B with anidulafungin or caspofungin against six blood isolates of C. auris. The antifungal activity of 0.5 mg/L of amphotericin B was limited against the six isolates of C. auris. Similarly, echinocandins alone had a negligible effect, even at the highest tested concentrations. By contrast, 1 mg/L of amphotericin B showed fungistatic activity. Synergy was rapidly achieved (8 h) with 0.5 mg/L of amphotericin B plus 2 mg/L of anidulafungin or caspofungin. These combinations lead to a sustained fungistatic effect, and the fungicidal endpoint was reached against some C. auris isolates. Additionally, ≥0.5 mg/L of either of the two echinocandins with 1 mg/L of amphotericin B resulted in fungicidal effect against all C. auris isolates. In conclusion, combinations of amphotericin B with anidulafungin or caspofungin provided greater killing with a lower dose requirement for amphotericin B compared to monotherapy, with synergistic and/or fungicidal outcomes.


2021 ◽  
Vol 7 (8) ◽  
pp. 663
Author(s):  
Yasser Nehela ◽  
Naglaa A. Taha ◽  
Abdelnaser A. Elzaawely ◽  
Tran Dang Xuan ◽  
Mohammed A. Amin ◽  
...  

Tomato early blight, caused by Alternaria solani, is a destructive foliar fungal disease. Herein, the potential defensive roles of benzoic acid (BA) and two of its hydroxylated derivatives, ρ-hydroxybenzoic acid (HBA), and protocatechuic acid (PCA) against A. solani were investigated. All tested compounds showed strong dose-dependent fungistatic activity against A. solani and significantly reduced the disease development. Benzoic acid, and its hydroxylated derivatives, enhanced vegetative growth and yield traits. Moreover, BA and its derivatives induce the activation of enzymatic (POX, PPO, CAT, SlAPXs, and SlSODs) and non-enzymatic (phenolics, flavonoids, and carotenoids) antioxidant defense machinery to maintain reactive oxygen species (ROS) homeostasis within infected leaves. Additionally, BA and its hydroxylated derivatives induce the accumulation of salicylic acid (SA) and its biosynthetic genes including isochorismate synthase (SlICS), aldehyde oxidases (SlAO1 and SlAO2), and phenylalanine ammonia-lyases (SlPAL1, SlPAL2, SlPAL3, SlPAL5, and SlPAL6). Higher SA levels were associated with upregulation of pathogenesis-related proteins (SlPR-1, SlPR1a2, SlPRB1-2, SlPR4, SlPR5, SlPR6), nonexpressor of pathogenesis-related protein 1 (SlNPR1), and salicylic acid-binding protein (SlSABP2). These findings outline the potential application of BA and its hydroxylated derivatives as a sustainable alternative control strategy for early blight disease and also deciphering the physiological and biochemical mechanisms behind their protective role.


2021 ◽  
Vol 22 (14) ◽  
pp. 7600
Author(s):  
Joanna Gach ◽  
Teresa Olejniczak ◽  
Piotr Krężel ◽  
Filip Boratyński

Phthalides are bioactive compounds that naturally occur in the family Apiaceae. Considering their potentially versatile applications, it is desirable to determine their physical properties, activity and metabolic pathways. This study aimed to examine the utility of whole-cell biocatalysts for obtaining 3-butyl-3-hydroxyphthalide, which is the metabolite formulated during mammalian metabolism of 3-n-butylidenephthalide. We performed transformations using 10 strains of fungi, five of which efficiently produced 3-butyl-3-hydroxyphthalide. The product yield, determined by high-performance liquid chromatography, reached 97.6% when Aspergillus candidus AM 386 was used as the biocatalyst. Increasing the scale of the process resulted in isolation yields of 29–45% after purification via reversed-phase thin layer chromatography, depending on the strain of the microorganism used. We proposed different mechanisms for product formation; however, hydration of 3-n-butylidenephthalide seems to be the most probable. Additionally, all phthalides were tested against clinical strains of Candida albicans using the microdilution method. Two phthalides showed a minimum inhibitory concentration, required to inhibit the growth of 50% of organisms, below 50 µg/mL. The 3-n-butylidenephthalide metabolite was generally inactive, and this feature in combination with its low lipophilicity suggests its involvement in the detoxification pathway. The log P value of tested compounds was in the range of 2.09–3.38.


Sign in / Sign up

Export Citation Format

Share Document