On fully-developed mixed convection and flow reversal of a power-law fluid in a vertical channel

1999 ◽  
Vol 26 (8) ◽  
pp. 1127-1137 ◽  
Author(s):  
A. Barletta
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Habibis Saleh ◽  
Ishak Hashim ◽  
Sri Basriati

The present analysis is concerned with the criteria for the onset of flow reversal of the fully developed mixed convection in a vertical channel under the effect of the chemical reaction. The governing equations and the critical values of the buoyancy force are solved and calculated numerically via MAPLE. Parameter zones for the occurrence of reversed flow are presented. The exothermic chemical reaction is found to enhance the flow reversal and made flow reversal possible for symmetrical walls temperature.


2021 ◽  
Author(s):  
Hasib Ahmed Prince ◽  
Didarul Ahasan Redwan ◽  
Enamul Hasan Rozin ◽  
Sudipta Saha ◽  
Mohammad Arif Hasan Mamun

Abstract In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered dependent on the rotation orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counter-clockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW-CCW and CCW-CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for better understandings of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies non-linearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights onto the sets of key parametric configuration that have dominant influence on the thermal performance of lid driven cavity with double rotating cylinders.


Sign in / Sign up

Export Citation Format

Share Document