Primary Cilia Deletion in Pancreatic Epithelial Cells Results in Cyst Formation and Pancreatitis

2007 ◽  
Vol 2007 ◽  
pp. 49
Author(s):  
D.L. Jaffe
Author(s):  
Paula L. Perez ◽  
Noelia Scarinci ◽  
Horacio F. Cantiello ◽  
María del Rocío Cantero

AbstractPolycystin-2 (PC2, TRPP2) is a Ca2+ permeable non-selective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. Little is known, however, as to whether PC2 contributes to the structure of the primary cilium. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild type LLC-PK1 renal epithelial cells. To identify primary cilia and measure their length, confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody. Although primary cilia length measurements did not follow a Normal distribution, data were normalized by Box-Cox transformation rendering statistical difference under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA also elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length, as compared to their respective scrambled RNA transfected cells. The data indicate that maneuvers that either regulate PC2 function or gene expression, modify the length of primary cilia in renal epithelial cells. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.Significance StatementPolycystin-2 (PC2, TRPP2) is a Ca2+ permeable non-selective cation channel causing the autosomal dominant polycystic kidney disease (ADPKD). The importance of intact cilia and of fully functional polycystins in the onset of ADPKD cyst formation, point to yet unknown signaling mechanisms occurring within this organelle. We determined that the extracellular Ca2+ concentration, PC2 channel blockers, and PKD2 gene silencing, all contribute to the length of primary cilia in wild type LLC-PK1 renal epithelial cells. The data indicate that proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.


2006 ◽  
Vol 131 (6) ◽  
pp. 1856-1869 ◽  
Author(s):  
David A. Cano ◽  
Shigeki Sekine ◽  
Matthias Hebrok

2020 ◽  
Author(s):  
Noelia Scarinci ◽  
Paula L. Perez ◽  
María del Rocío Cantero ◽  
Horacio F. Cantiello

AbstractThe primary cilium is a sensory organelle projecting from the apical surface of renal epithelial cells. Dysfunctional cilia have been linked to a number of genetic diseases known as ciliopathies, which include autosomal dominant polycystic kidney disease (ADPKD). Previous studies have determined that renal epithelial primary cilia express both the polycystin-2 (PC2, TRPP2) channel and the type-2 vasopressin receptor (V2R), coupled to local cAMP production. However, little is known as to how Ca2+ and cAMP signals lead to changes in the length of the primary cilium. Here, we explored how cAMP signals regulate the length of the primary cilium in wild type LLC-PK1 renal epithelial cells. Primary cilia length was determined by immunocytochemical labeling of the ciliary axoneme. Treatment of cells with the cAMP analog 8-Br-cAMP (1 mM) in normal external Ca2+ (1.2 mM) produced a 25.3% increase (p < 0.0001) in the length of the primary cilium, a phenomenon also observed in cells exposed to high external Ca2+ (6.2 mM). However, exposure of cells to vasopressin (AVP, 10 μM), which also increases cAMP in primary cilia of LLC-PK1 cells, mimicked the effect of 8-Br-cAMP in normal, but not in high Ca2+. Further, specific gene silencing of PC2 expression further increased primary cilium length after 8-Br-cAMP treatment, in normal, but not high Ca2+. The encompassed data indicate a crosstalk between the cAMP and Ca2+ signals to modulate the length of the primary cilium, in a phenomenon that implicates the expression of PC2.Significance StatementMorphological changes in primary cilia have been linked to genetic disorders, including autosomal dominant polycystic kidney disease (ADPKD), a major cause of kidney disease. Both cAMP and Ca2+ are universal second messengers that regulate polycystin-2 (PC2, TRPP2), a Ca2+ permeable non-selective cation channel implicated in ADPKD, and expressed in the primary cilium of renal epithelial cells. Despite current interest, little is known as to how second messenger systems and how aberrant regulation of PC2 may link primary cilium structure with cyst formation in ADPKD. Here we determined that both the cAMP analog 8-Br-cAMP and vasopressin increase the length of the primary cilium in renal epithelial cells. However, this phenomenon depends of external Ca2+ and PKD2 gene silencing. Proper cAMP signaling may be essential in the control of the primary cilium of renal epithelial cells, and the onset of cyst formation in ADPKD.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Astia Rizki-Safitri ◽  
Marie Shinohara ◽  
Yasushi Miura ◽  
Mathieu Danoy ◽  
Minoru Tanaka ◽  
...  

2019 ◽  
Vol 30 (10) ◽  
pp. 1841-1856 ◽  
Author(s):  
Kurt A. Zimmerman ◽  
Cheng J. Song ◽  
Zhang Li ◽  
Jeremie M. Lever ◽  
David K. Crossman ◽  
...  

BackgroundMutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12–14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified.MethodsWe analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation.ResultsOur data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease.ConclusionsThese data uncover an important pathogenic role for resident macrophages during rapid cyst progression.


2012 ◽  
Vol 303 (8) ◽  
pp. C862-C871 ◽  
Author(s):  
Vinita Takiar ◽  
Kavita Mistry ◽  
Monica Carmosino ◽  
Nicole Schaeren-Wiemers ◽  
Michael J. Caplan

The polarized organization of epithelial cells is required for vectorial solute transport and may be altered in renal cystic diseases. Vesicle integral protein of 17 kDa (VIP17/MAL) is involved in apical vesicle transport. VIP17/MAL overexpression in vivo results in renal cystogenesis of unknown etiology. Renal cystogenesis can occur as a consequence of defects of the primary cilium. To explore the role of VIP17/MAL in renal cystogenesis and ciliogenesis, we examined the polarization and ciliary morphology of wild-type and VIP17/MAL overexpressing Madin-Darby canine kidney renal epithelial cells grown in two-dimensional (2D) and three-dimensional (3D) cyst culture. VIP17/MAL is apically localized when expressed in cells maintained in 2D and 3D culture. VIP17/MAL overexpressing cells produce more multilumen cysts compared with controls. While the distributions of basolateral markers are not affected, VIP17/MAL expression results in aberrant sorting of the apical marker gp135 to the primary cilium. VIP17/MAL overexpression is also associated with shortened or absent cilia. Immunofluorescence analysis performed on kidney sections from VIP17/MAL transgenic mice also demonstrates fewer and shortened cilia within dilated lumens ( P < 0.01). These studies demonstrate that VIP17/MAL overexpression results in abnormal cilium and cyst development, in vitro and in vivo, suggesting that VIP17/MAL overexpressing mice may develop cysts secondary to a ciliary defect.


2009 ◽  
Vol 20 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Christian E. Overgaard ◽  
Kaitlin M. Sanzone ◽  
Krystle S. Spiczka ◽  
David R. Sheff ◽  
Alexander Sandra ◽  
...  

Stress-induced shedding of motile cilia (autotomy) has been documented in diverse organisms and likely represents a conserved cellular reaction. However, little is known about whether primary cilia are shed from mammalian epithelial cells and what impact deciliation has on polarized cellular organization. We show that several chemically distinct agents trigger autotomy in epithelial cells. Surprisingly, deciliation is associated with a significant, but reversible increase in transepithelial resistance. This reflects substantial reductions in tight junction proteins associated with “leaky” nephron segments (e.g., claudin-2). At the same time, apical trafficking of gp80/clusterin and gp114/CEACAM becomes randomized, basal-lateral delivery of Na,K-ATPase is reduced, and expression of the nonciliary apical protein gp135/podocalyxin is greatly decreased. However, ciliogenesis-impaired MDCK cells do not undergo continual junction remodeling, and mature cilia are not required for autotomy-associated remodeling events. Deciliation and epithelial remodeling may be mechanistically linked processes, because RNAi-mediated reduction of Exocyst subunit Sec6 inhibits ciliary shedding and specifically blocks deciliation-associated down-regulation of claudin-2 and gp135. We propose that ciliary autotomy represents a signaling pathway that impacts the organization and function of polarized epithelial cells.


2017 ◽  
Vol 312 (4) ◽  
pp. F791-F805 ◽  
Author(s):  
Brian J. Siroky ◽  
Nancy K. Kleene ◽  
Steven J. Kleene ◽  
Charles D. Varnell ◽  
Raven G. Comer ◽  
...  

Primary cilia sense environmental conditions, including osmolality, but whether cilia participate in the osmotic response in renal epithelial cells is not known. The transient receptor potential (TRP) channels TRPV4 and TRPM3 are osmoresponsive. TRPV4 localizes to cilia in certain cell types, while renal subcellular localization of TRPM3 is not known. We hypothesized that primary cilia are required for maximal activation of the osmotic response of renal epithelial cells and that ciliary TRPM3 and TRPV4 mediate that response. Ciliated [murine epithelial cells from the renal inner medullary collecting duct (mIMCD-3) and 176-5] and nonciliated (176-5Δ) renal cells expressed Trpv4 and Trpm3. Ciliary expression of TRPM3 was observed in mIMCD-3 and 176-5 cells and in wild-type mouse kidney tissue. TRPV4 was identified in cilia and apical membrane of mIMCD-3 cells by electrophysiology and in the cell body by immunofluorescence. Hyperosmolal stress at 500 mOsm/kg (via NaCl addition) induced the osmotic response genes betaine/GABA transporter ( Bgt1) and aldose reductase ( Akr1b3) in all ciliated cell lines. This induction was attenuated in nonciliated cells. A TRPV4 agonist abrogated Bgt1 and Akr1b3 induction in ciliated and nonciliated cells. A TRPM3 agonist attenuated Bgt1 and Akr1b3 induction in ciliated cells only. TRPM3 knockout attenuated Akr1b3 induction. Viability under osmotic stress was greater in ciliated than nonciliated cells. Akr1b3 induction was also less in nonciliated than ciliated cells when mannitol was used to induce hyperosmolal stress. These findings suggest that primary cilia are required for the maximal osmotic response in renal epithelial cells and that TRPM3 is involved in this mechanism. TRPV4 appears to modulate the osmotic response independent of cilia.


2014 ◽  
Vol 5 ◽  
Author(s):  
Viralkumar S. Upadhyay ◽  
Brian S. Muntean ◽  
Sarmed H. Kathem ◽  
Jangyoun J. Hwang ◽  
Wissam A. AbouAlaiwi ◽  
...  

2016 ◽  
Vol 214 (3) ◽  
pp. 237-239 ◽  
Author(s):  
Carolyn M. Ott

Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium—who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model.


Sign in / Sign up

Export Citation Format

Share Document