scholarly journals Deciliation Is Associated with Dramatic Remodeling of Epithelial Cell Junctions and Surface Domains

2009 ◽  
Vol 20 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Christian E. Overgaard ◽  
Kaitlin M. Sanzone ◽  
Krystle S. Spiczka ◽  
David R. Sheff ◽  
Alexander Sandra ◽  
...  

Stress-induced shedding of motile cilia (autotomy) has been documented in diverse organisms and likely represents a conserved cellular reaction. However, little is known about whether primary cilia are shed from mammalian epithelial cells and what impact deciliation has on polarized cellular organization. We show that several chemically distinct agents trigger autotomy in epithelial cells. Surprisingly, deciliation is associated with a significant, but reversible increase in transepithelial resistance. This reflects substantial reductions in tight junction proteins associated with “leaky” nephron segments (e.g., claudin-2). At the same time, apical trafficking of gp80/clusterin and gp114/CEACAM becomes randomized, basal-lateral delivery of Na,K-ATPase is reduced, and expression of the nonciliary apical protein gp135/podocalyxin is greatly decreased. However, ciliogenesis-impaired MDCK cells do not undergo continual junction remodeling, and mature cilia are not required for autotomy-associated remodeling events. Deciliation and epithelial remodeling may be mechanistically linked processes, because RNAi-mediated reduction of Exocyst subunit Sec6 inhibits ciliary shedding and specifically blocks deciliation-associated down-regulation of claudin-2 and gp135. We propose that ciliary autotomy represents a signaling pathway that impacts the organization and function of polarized epithelial cells.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jen Xu ◽  
Yong Wu ◽  
Suyang Li ◽  
Kenneth Lim ◽  
Tianqing Kong ◽  
...  

Introduction and hypothesis: E-cadherin plays an important role in maintaining the integrity of cell polarity and cell junctions. It is one of the major proteins that forms part of the polycystin-1 (PC1) complex in renal epithelial cells. We previously showed that deletion of the PC1-regulated protein, Gα12, protected kidneys from development of kidney cysts induced by Pkd1 inactivation and activation of Gα12 increased the shedding of E-cadherin in autosomal dominant polycystic kidney disease (ADPKD). The objective of this study was to determine the molecular mechanisms by which Gα12 regulates E-cadherin shedding. Methods: We analyzed polycystic kidneys from human and from Pkd1 knock-out mice. Using Madin-Darby canine kidney (MDCK) cells, we developed a Pkd1 deletion in vitro model using Pkd1 siRNA. Results: Our data shows that Pkd1 deletion caused accumulation of cleaved E-cadherin fragment in renal cystic fluid in both human polycystic kidneys and in our mice model. In addition, we found that activation of Gα12 increased the active form of ADAM10, the cleavage protein for E-cadherin in both human and mice polycystic kidneys, in vivo. In our MDCK cellular three-dimensional culture system, Gα12 activation promoted cyst formation and this phenomenon was inhibited by ADAM10 knockdown. Furthermore, knockdown of ADAM10 abolished the shedding of E-cadherin caused by Gα12 activation. These data indicate that ADAM10 is the major sheddase for cleavage of E-cadherin caused by Gα12 activation. Conclusion: Our results demonstrate that Gα12 activation increases ADAM10 activity and promotes the ectodomain shedding of E-cadherin, which is an important mechanism in the development of kidney cysts induced by Pkd1 deletion in ADPKD.


2019 ◽  
Vol 30 (1) ◽  
pp. 82-95 ◽  
Author(s):  
Tomohito Higashi ◽  
Rachel E. Stephenson ◽  
Ann L. Miller

Reorganization of the actin cytoskeleton is crucial for cellular processes, including cytokinesis and cell–cell junction remodeling. Formins are conserved processive actin-polymerizing machines that regulate actin dynamics by nucleating, elongating, and bundling linear actin filaments. Because the formin family is large, with at least 15 members in vertebrates, there have not been any comprehensive studies examining formin localization and function within a common cell type. Here, we characterized the localization of all 15 formins in epithelial cells of Xenopus laevis gastrula-stage embryos. Dia1 and Dia2 localized to tight junctions, while Fhod1 and Fhod3 localized to adherens junctions. Only Dia3 strongly localized at the cytokinetic contractile ring. The Diaphanous inhibitory domain–dimerization domain (DID-DD) region of Dia1 was sufficient for Dia1 localization, and overexpression of a Dia1 DID-DD fragment competitively removed Dia1 and Dia2 from cell–cell junctions. In Dia1 DID-DD–overexpressing cells, Dia1 and Dia2 were mislocalized to the contractile ring, and cells exhibited increased cytokinesis failure. This work provides a comprehensive analysis of the localization of all 15 vertebrate formins in epithelial cells and suggests that misregulated formin localization results in epithelial cytokinesis failure.


2003 ◽  
Vol 285 (5) ◽  
pp. C1281-C1293 ◽  
Author(s):  
Tobias N. Meyer ◽  
Jennifer Hunt ◽  
Catherine Schwesinger ◽  
Bradley M. Denker

Regulation and assembly of the epithelial cell junctional complex involve multiple signaling mechanisms, including heterotrimeric G proteins. Recently, we demonstrated that Gα12 binds to the tight junction scaffolding protein ZO-1 through the SH3 domain and that activated Gα12 increases paracellular permeability in Madin-Darby canine kidney (MDCK) cells (Meyer et al. J Biol Chem 277: 24855-24858, 2002). In the present studies, we explore the effects of Gα12 expression on tight and adherens junction proteins and examine downstream signaling pathways. By confocal microscopy, we detect disrupted tight and adherens junction proteins with increased actin stress fibers in constitutively active Gα12 (QLα12)-expressing MDCK cells. The normal distribution of ZO-1 and Na-K-ATPase was altered in QLα12-expressing MDCK cells, consistent with loss of polarity. We found that the tyrosine kinase inhibitor genistein and the Src-specific inhibitor PP-2 reversibly abrogated the QLα12 phenotype on the junctional complex. Junctional protein localization was preserved in PP-2- or genistein-treated QLα12-expressing cells, and the increase in paracellular permeability as measured by transepithelial resistance and [3H]mannitol flux was prevented by the inhibitors. Src activity was increased in QLα12-expressing MDCK cells as assessed by Src autophosphorylation, and β-catenin tyrosine phosphorylation was also increased, although there was no detectable increase in Rho activity. Taken together, these results indicate that Gα12 regulates MDCK cell junctions, in part through Src tyrosine kinase pathways.


1996 ◽  
Vol 132 (5) ◽  
pp. 813-821 ◽  
Author(s):  
P van der Bijl ◽  
M Lopes-Cardozo ◽  
G van Meer

The high concentration of glycosphingolipids on the apical surface of epithelial cells may be generated by selective transport from their site of synthesis to the cell surface. Previously, we showed that canine kidney MDCK and human intestinal Caco-2 cells converted a ceramide carrying the short fluorescent fatty acid C6-NBD to glucosylceramide (GlcCer) and sphingomyelin (SM), and that GlcCer was preferentially transported to the apical surface as compared to SM. Here, we address the point that not all glycosphingolipid classes are apically enriched in epithelia. We show that a ceramide containing the 2-hydroxy fatty acid C6OH was preferentially converted by MDCK and Caco-2 cells to galactosylceramide (GalCer) and its derivatives galabiosylceramide (Ga2Cer) and sulfatide (SGalCer) as compared to SM and GlcCer--all endogenous lipid classes of these cells. Transport to the apical and basolateral cell surface was monitored by a BSA-depletion assay. In MDCK cells, GalCer reached the cell surface with two- to sixfold lower apical/basolateral polarity than GlcCer. Remarkably, in Caco-2 cells GalCer and GlcCer displayed the same apical/basolateral polarity, but it was sixfold lower for lipids with a C6OH chain than for C6-NBD lipids. Therefore, the sorting of a sphingolipid appears to depend on lipid structure and cell type. We propose that the different ratios of gluco- and galactosphingolipid synthesis in the various epithelial tissues govern lipid sorting in the membrane of the trans Golgi network by dictating the composition of the domains from where vesicles bud to the apical and basolateral cell surface.


2020 ◽  
Author(s):  
Valencia L. Potter ◽  
Abigail R. Moye ◽  
Michael A. Robichaux ◽  
Theodore G. Wensel

AbstractMutations in the cilium-associated protein CEP290 cause retinal degeneration as part of multi-organ syndromic ciliopathies or as retina-specific diseases. The precise location and the functional roles of CEP290 within cilia and, specifically, the connecting cilia (CC) of photoreceptors, remain unclear. We used superresolution fluorescence microscopy and electron microscopy (TEM) to localize CEP290 in the CC and in primary cilia of cultured cells with sub-diffraction resolution, and to determine effects of CEP290 deficiency. Radially, CEP290 co-localizes with the microtubule doublets and extends beyond them. Longitudinally, it is distributed throughout the length of the CC but is strictly confined to the very base of primary cilia in hRPE-1 cells. We found Y-shaped links, the ciliary sub-structures between microtubules and membrane, at the base of the transition zone in primary cilia of epithelial cells and throughout the length of the CC. Severe CEP290 deficiencies in mouse models did not prevent assembly of cilia or cause obvious mislocalization of ciliary components in early stages of degeneration. They did not lead to loss of the Y-shaped links but caused changes in their structures. These results point to photoreceptor-specific functions of CEP290 essential for CC maturation and stability following the earliest stages of ciliogenesis.


2002 ◽  
Vol 13 (6) ◽  
pp. 2132-2146 ◽  
Author(s):  
Lisa S. Lock ◽  
Christiane R. Maroun ◽  
Monica A. Naujokas ◽  
Morag Park

The Gab family of docking proteins (Gab1 and Gab2) are phosphorylated in response to various cytokines and growth factors. Gab1 acts to diversify the signal downstream from the Met receptor tyrosine kinase through the recruitment of multiple signaling proteins, and is essential for epithelial morphogenesis. To determine whether Gab1 and Gab2 are functionally redundant, we have examined the role of Gab2 in epithelial cells. Both Gab1 and Gab2 are expressed in epithelial cells and localize to cell-cell junctions. However, whereas overexpression of Gab1 promotes a morphogenic response, the overexpression of Gab2 fails to induce this response. We show that Gab2 recruitment to the Met receptor is dependent on the Grb2 adapter protein. In contrast, Gab1 recruitment to Met is both Grb2 dependent and Grb2 independent. The latter requires a novel amino acid sequence present in the Met-binding domain of Gab1 but not Gab2. Mutation of these residues in Gab1 impairs both association with the Met receptor and the ability of Gab1 to promote a morphogenic response, whereas their insertion into Gab2 increases Gab2 association with Met, but does not confer on Gab2 the ability to promote epithelial morphogenesis. We propose that the Grb2-independent recruitment of Gab proteins to Met is necessary but not sufficient to promote epithelial morphogenesis.


2001 ◽  
Vol 114 (5) ◽  
pp. 941-952 ◽  
Author(s):  
G.K. Ojakian ◽  
D.R. Ratcliffe ◽  
R. Schwimmer

The extracellular matrix plays an important role in regulation of epithelial development and organization. To determine more precisely the function of extracellular matrix in this process, the initial steps in collagen-mediated formation of epithelial tubules were studied using a model cell culture system. Previous studies have demonstrated that incubation of Madin-Darby canine kidney (MDCK) epithelial cells with a collagen gel overlay induces (beta)1 integrin-regulated epithelial remodeling accompanied by extensive cell rearrangements and formation of epithelial tubules. During epithelial remodeling there was extensive disruption of the epithelial junctional complex. Progressive opening of tight junctions was observed over 8 hours using transepithelial resistance measurements and immunofluorescence microscopy demonstrated that tight and adherens junction proteins were dispersed throughout the apical and basolateral membranes. Junction complex disruption allowed the formation of apical cell extensions and subsequent migration of selected cell sheets from the epithelial monolayer. Confocal microscopy demonstrated the presence of adherens junction (E-cadherin, (alpha)-catenin, (beta)-catenin, plakoglobin) and desmosomal (desmoplakin-1/2, plakoglobin) proteins on, and within, cell extensions demonstrating that cell junctions had undergone considerable disassembly. However, groups of cell extensions appeared to be associated by E-cadherin/catenin-mediated interactions. Association of E-cadherin/catenin complexes with the epithelial cytoskeleton was analyzed by differential detergent extraction. SDS-PAGE and immunoblot analysis demonstrated that adherens junction proteins were primarily cytoskeleton-associated in control cells. During integrin-regulated remodeling, there was a progressive reduction in the interaction of adherens junction proteins with the cytoskeleton suggesting that they play an important role in the maintenance of epithelial integrity. Since loss of transepithelial electrical resistance and disruption of junctional complexes were inhibited by an antifunctional integrin antibody, we propose that activation of integrin signaling pathways regulate junctional complex stability, cell-cell interactions and cell migration. These observations provide evidence that integrin-regulated MDCK epithelial tubule formation can serve as a model system for studying rearrangements of epithelial sheets which occur during development.


2008 ◽  
Vol 36 (3) ◽  
pp. 384-386 ◽  
Author(s):  
David R. Burgess

Cleavage divisions in many animals form a blastula made up of a simple polarized epithelium. This simple embryonic epithelium possesses an apical surface covered with microvilli and primary cilia separated from the basolateral surfaces by cell–cell junctions. The apical membrane proteins and lipids differ from those of the basolateral on these embryonic epithelial cells, as is found in adult epithelial cells. Formation of cell polarity in embryos at fertilization, including those from both protostomes and deuterostomes, uses the same molecules and signalling machinery as do polarizing epithelial cells that polarize upon cell–cell contact. In addition, the actin–myosin cytoskeleton plays an integral role in establishment and maintenance of this early cell polarity. However, early cleaving blastomeres from higher organisms including echinoderms and vertebrates have not been considered to exhibit cell polarity until formation of junctions at the third through to the fifth cleavage divisions. The role of new membrane addition into the late cleavage furrow during the early rounds of cytokinesis may play a key role in the early establishment of cell polarity in all animal embryos.


2003 ◽  
Vol 285 (1) ◽  
pp. C102-C111 ◽  
Author(s):  
Shobha Gopalakrishnan ◽  
Mark A. Hallett ◽  
Simon J. Atkinson ◽  
James. A. Marrs

Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells. Calpeptin induced disassembly of stress fibers and inhibition of Rho GTPase activity in MDCK cells. Interestingly, calpeptin augmented stress fiber formation in LLC-PK epithelial cells. Calpeptin treatment of MDCK cells resulted in a displacement of zonula occludens-1 (ZO-1) and occludin from cell-cell junctions and a loss of phosphotyrosine on ZO-1 and ZO-2, without any detectable effect on tight junction permeability. Surprisingly, calpeptin increased paracellular permeability in LLC-PK cells even though it did not affect tight junction assembly. Calpeptin also modulated adherens junction assembly in MDCK cells but not in LLC-PK cells. Calpeptin treatment of MDCK cells induced redistribution of E-cadherin and β-catenin from intercellular junctions and reduced the association of p120ctn with the E-cadherin/catenin complex. Together, our studies demonstrate that calpeptin differentially regulates stress fiber and junctional complex assembly in MDCK and LLC-PK epithelial cells, indicating that these pathways may be regulated in a cell line-specific manner.


Sign in / Sign up

Export Citation Format

Share Document