Lipid peroxidation in aging brain and Alzheimer’s disease1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on “Causes and Consequences of Oxidative Stress in Alzheimer’s Disease.” The full list of papers may be found on the homepage of the journal.

2002 ◽  
Vol 33 (5) ◽  
pp. 620-626 ◽  
Author(s):  
Thomas J Montine ◽  
M.Diana Neely ◽  
Joseph F Quinn ◽  
M.Flint Beal ◽  
William R Markesbery ◽  
...  
2018 ◽  
Vol 62 (3) ◽  
pp. 1319-1335 ◽  
Author(s):  
Patrizia Mecocci ◽  
Virginia Boccardi ◽  
Roberta Cecchetti ◽  
Patrizia Bastiani ◽  
Michela Scamosci ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ioana-Miruna Balmuș ◽  
Stefan-Adrian Strungaru ◽  
Alin Ciobica ◽  
Mircea-Nicusor Nicoara ◽  
Romeo Dobrin ◽  
...  

Increased interest regarding the biometal mechanisms of action and the pathways in which they have regulatory roles was lately observed. Particularly, it was shown that biometal homeostasis dysregulation may lead to neurodegeneration including Alzheimer’s disease, Parkinson disease, or prion protein disease, since important molecular signaling mechanisms in brain functions implicate both oxidative stress and redox active biometals. Oxidative stress could be a result of a breakdown in metal-ion homeostasis which leads to abnormal metal protein chelation. In our previous work, we reported a strong correlation between Alzheimer’s disease and oxidative stress. Consequently, the aim of the present work was to evaluate some of the biometals’ levels (magnesium, manganese, and iron), the specific activity of some antioxidant enzymes (superoxide dismutase and glutathione peroxidase), and a common lipid peroxidation marker (malondialdehyde concentration), in mild cognitive impairment (n=15) and Alzheimer’s disease (n=15) patients, compared to age-matched healthy subjects (n=15). We found increased lipid peroxidation effects, low antioxidant defense, low magnesium and iron concentrations, and high manganese levels in mild cognitive impairment and Alzheimer’s disease patients, in a gradual manner. These data could be relevant for future association studies regarding the prediction of Alzheimer’s disease development risk or circling through stages by analyzing both active redox metals, oxidative stress markers, and the correlations in between.


Sign in / Sign up

Export Citation Format

Share Document