scholarly journals Modelling and mathematical problems related to tumor evolution and its interaction with the immune system

2000 ◽  
Vol 32 (3-4) ◽  
pp. 413-452 ◽  
Author(s):  
N. Bellomo ◽  
L. Preziosi
2003 ◽  
Vol 5 (2) ◽  
pp. 111-136 ◽  
Author(s):  
Nicola Bellomo ◽  
Elena De Angelis ◽  
Luigi Preziosi

This paper provides a survey of mathematical models and methods dealing with the analysis and simulation of tumor dynamics in competition with the immune system. The characteristic scales of the phenomena are identified and the mathematical literature on models and problems developed on each scale is reviewed and critically analyzed. Moreover, this paper deals with the modeling and optimization of therapeutical actions. The aim of the critical analysis and review consists in providing the background framework towards the development of research perspectives in this promising new field of applied mathematics.


2020 ◽  
Vol 21 (2) ◽  
pp. 597 ◽  
Author(s):  
Kei Kunimasa ◽  
Taichiro Goto

The immune system plays a dual role in tumor evolution—it can identify and control nascent tumor cells in a process called immunosurveillance and can promote tumor progression through immunosuppression via various mechanisms. Thus, bilateral host-protective and tumor-promoting actions of immunity are integrated as cancer immunoediting. In this decade, immune checkpoint inhibitors, specifically programmed cell death 1 (PD-1) pathway inhibitors, have changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC). These agents are approved for the treatment of patients with NSCLC and demonstrate impressive clinical activity and durable responses in some patients. However, for many NSCLC patients, the efficacy of immune checkpoint inhibitors is limited. To optimize the full utility of the immune system for eradicating cancer, a broader understanding of cancer immunosurveillance and immunoediting is essential. In this review, we discuss the fundamental knowledge of the phenomena and provide an overview of the next-generation immunotherapies in the pipeline.


2015 ◽  
Vol 5 (4) ◽  
pp. e306-e306 ◽  
Author(s):  
T Dosani ◽  
M Carlsten ◽  
I Maric ◽  
O Landgren

Abstract As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions.


2019 ◽  
Author(s):  
Alexej Ballhausen ◽  
Moritz Jakob Przybilla ◽  
Michael Jendrusch ◽  
Saskia Haupt ◽  
Elisabeth Pfaffendorf ◽  
...  

AbstractThe immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are particularly abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. The abundance of mutational neoantigens renders MSI cancers sensitive to immune checkpoint blockade. However, the neoantigen landscape of MMR-deficient cancers has not yet been systematically mapped. In the present study, we used a novel tool to monitor neoantigen-inducing indel mutations in MSI colorectal and endometrial cancer. Our results show that MSI cancers share several highly immunogenic neoantigens that result from specific, recurrent indel mutation events. Notably, the frequency of such indel mutations was negatively correlated to the predicted immunogenicity of the resulting neoantigens. These observations suggest continuous immunoediting of emerging MMR-deficient cells during tumor evolution.One sentence summaryQuantitative indel mutation analysis reveals evidence of immune selection in mismatch repair-deficient cancers


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document