Application of combined three-dimensional bone and soft tissue model

1998 ◽  
Vol 27 (6) ◽  
pp. 482-484 ◽  
Author(s):  
Gert Santler ◽  
Hans Kaercher ◽  
Alexander Gaggl ◽  
Guenter Schultes
Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 757
Author(s):  
Maged Sultan Alhammadi ◽  
Abeer Abdulkareem Al-mashraqi ◽  
Rayid Hussain Alnami ◽  
Nawaf Mohammad Ashqar ◽  
Omar Hassan Alamir ◽  
...  

The study sought to assess whether the soft tissue facial profile measurements of direct Cone Beam Computed Tomography (CBCT) and wrapped CBCT images of non-standardized facial photographs are accurate compared to the standardized digital photographs. In this cross-sectional study, 60 patients with an age range of 18–30 years, who were indicated for CBCT, were enrolled. Two facial photographs were taken per patient: standardized and random (non-standardized). The non-standardized ones were wrapped with the CBCT images. The most used soft tissue facial profile landmarks/parameters (linear and angular) were measured on direct soft tissue three-dimensional (3D) images and on the photographs wrapped over the 3D-CBCT images, and then compared to the standardized photographs. The reliability analysis was performed using concordance correlation coefficients (CCC) and depicted graphically using Bland–Altman plots. Most of the linear and angular measurements showed high reliability (0.91 to 0.998). Nevertheless, four soft tissue measurements were unreliable; namely, posterior gonial angle (0.085 and 0.11 for wrapped and direct CBCT soft tissue, respectively), mandibular plane angle (0.006 and 0.0016 for wrapped and direct CBCT soft tissue, respectively), posterior facial height (0.63 and 0.62 for wrapped and direct CBCT soft tissue, respectively) and total soft tissue facial convexity (0.52 for both wrapped and direct CBCT soft tissue, respectively). The soft tissue facial profile measurements from either the direct 3D-CBCT images or the wrapped CBCT images of non-standardized frontal photographs were accurate, and can be used to analyze most of the soft tissue facial profile measurements.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


2021 ◽  
Vol 46 (4) ◽  
pp. 352-359
Author(s):  
Susumu Saito ◽  
Itaru Tsuge ◽  
Hiroki Yamanaka ◽  
Naoki Morimoto

Wassel VI radial polydactyly is associated with metacarpal adduction and radial deviation of the metacarpophalangeal joint of the ulnar duplicate. The soft tissue abnormalities responsible for these deformities were characterized using preoperative multi-planar three-dimensional ultrasound and intraoperative observation in four patients. In all patients, the abductor pollicis brevis and superficial head of the flexor pollicis brevis inserted into the radial first metacarpal, whereas the adductor pollicis and deep head of the flexor pollicis brevis inserted into the ulnar thumb. Aberrant location of the flexor pollicis longus and absence of the A1 pulley system was associated with severe radial deviation. An additional superficial thenar muscle along the ulnar metacarpal was associated with minimal metacarpal adduction. Uneven forces on the ulnar duplicate could be associated with these characteristic deformities and joint instability. Knowledge of these abnormalities allows better planning of surgery and further insight into this rare radial polydactyly configuration. Level of evidence: II


Author(s):  
Roberto Rongo ◽  
Line Nissen ◽  
Cécile Leroy ◽  
Ambrosina Michelotti ◽  
Paolo M. Cattaneo ◽  
...  

2020 ◽  
Vol 54 (4) ◽  
pp. 289-296
Author(s):  
Adeeba Ali ◽  
Anil K. Chandna ◽  
Anshul Munjal

Background: Concerns about the accuracy and reliability of soft tissue landmarks using two-dimensional (2D) and three-dimensional (3D) imaging. Objective: The aim of the systematic review is to estimate accuracy and reliability of soft tissue landmarks with 2D imaging and 3D imaging for orthodontic diagnosis planning and treatment planning purposes. Data Sources: Electronic database search was performed in MEDLINE via PubMed, Embase via embase.com, and the Cochrane library website. Selection Criteria: The data were extracted according to two protocols based on Centre for Evidence-Based Medicine (CEBM) critical appraisal tools. Next, levels of evidence were categorized into three groups: low, medium, and high. Data Synthesis: Fifty-five publications were found through database search strategies. A total of nine publications were included in this review. Conclusion According to the available literature, 3D imaging modalities were more accurate and reliable as compared to 2D modalities. Cone beam computed tomography (CBCT) was considered the most reliable imaging tool for soft tissues.


Sign in / Sign up

Export Citation Format

Share Document