Anisotropic behavior of electrical conductivity and collective motion of charge density wave in quasi-two-dimensional conductor η-Mo4O11

2000 ◽  
Vol 284-288 ◽  
pp. 1663-1664 ◽  
Author(s):  
Mikio Koyano ◽  
Atsushi Miyata ◽  
Hiroyuki Hara
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Alexeï Bosak ◽  
Sofia-Michaela Souliou ◽  
Clément Faugeras ◽  
Rolf Heid ◽  
Maciej R. Molas ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Zhenzhong Shi ◽  
S. J. Kuhn ◽  
F. Flicker ◽  
T. Helm ◽  
J. Lee ◽  
...  

Author(s):  
Quanzhen Zhang ◽  
Zeping Huang ◽  
Yanhui Hou ◽  
Peiwen Yuan ◽  
Ziqiang Xu ◽  
...  

1993 ◽  
Vol 07 (23n24) ◽  
pp. 3973-4003 ◽  
Author(s):  
P. FOURY ◽  
J.P. POUGET

The structural instabilities towards the formation of a charge density wave (CDW) ground state exhibited by several layered Mo and W bronzes and oxides are reviewed. It is shown that in these two-dimensional (2D) metals, including the purple bronzes A x Mo 6 O 17 (A=K, Na, Tl; x≈1), the γ and η phases of MO 4 O 11 and the monophosphate tungsten bronzes with pentagonal tunnels ( PO 2)4 ( WO 3)2m(m=4, 6, 7), the CDW instability can be associated with particular chains of MoO 6 or WO 6 octahedra of the ReO 3 type slabs along which there is a strong overlap of the t 2g orbitals. The CDW critical wave vectors of the purple bronzes, Mo 4 O 11 and the tungsten bronzes with m=4 and 6 lead to a common nesting between differently oriented 1D Fermi surfaces. It is suggested that the anharmonic CDW modulation, which occurs in the tungsten bronzes with m≥7, could be the structural fingerprint of electron localization effects.


2002 ◽  
Vol 12 (9) ◽  
pp. 315-315
Author(s):  
K. Cicak ◽  
K. O'Neill ◽  
R. E. Thorne

Below T=40 K, charge-density wave (CDW) transport in NbSe3 is characterized by two well-defined driving force thresholds ET and ET*. Between these thresholds the CDW moves extremely slowly with creep-like temperature and driving force dependencies. At the same time, the CDW exhibits coherent oscillations with a frequency proportional to the CDW current and having very narrow spectral widths, suggesting that the collective motion is temporally ordered. We have extended our initial work to doped crystals containing isoelectronic (Ta) and nonisoelectronic (Ti) impurities, and to crystals of different thicknesses. These experiments show that the qualitative features are extremely robust, and that the functional form of the creep velocity versus driving force and temperature is consistent across all samples for currents ranging over five orders of magnitude. The temperature dependence is consistent with processes having an energy comparable to the CDW gap, but the field and impurity dependencies are inconsistent with all predicted functional forms for creep in CDWs and related systems, and with our earlier picture of amplitude collapse at each impurity. We compare our results to measurements of creep-like behavior in other CDW and SDW systems, and discuss possible mechanisms.


Sign in / Sign up

Export Citation Format

Share Document