High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation

2003 ◽  
Vol 341 (1-2) ◽  
pp. 273-281 ◽  
Author(s):  
Kyung-Tae Park ◽  
Duck-Young Hwang ◽  
Young-Kook Lee ◽  
Young-Kuk Kim ◽  
Dong Hyuk Shin
Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 493 ◽  
Author(s):  
Harishchandra Lanjewar ◽  
Leo Kestens ◽  
Patricia Verleysen

Metals with a fine-grained microstructure have exceptional mechanical properties. Severe plastic deformation (SPD) is one of the most successful ways to fabricate ultrafine-grained (UFG) and nanostructured (NC) materials. Most of the SPD techniques employ very low processing speeds. However, the lowest steady-state grain size which can be obtained by SPD is considered to be inversely proportional with the strain rate at which the severe deformation is imposed. In order to overcome this limitation, methods operating at higher rates have been envisaged and used to study the fragmentation process and the properties of the obtained materials. However, almost none of these methods, employ hydrostatic pressures which are needed to prevent the material from failing at high deformation strains. As such, their applicability is limited to materials with a high intrinsic ductility. Additionally, in some methods the microstructural changes are limited to the surface layers of the material. To circumvent these restrictions, a novel facility has been designed and developed which deforms the material at high strain rate under high hydrostatic pressures. Using the facility, commercially pure aluminum was processed and analysis of the deformed material was performed. The microstructure evolution in this material was compared with that observed in static high pressure torsion (HPT) processed material.


2005 ◽  
Vol 475-479 ◽  
pp. 2937-2940 ◽  
Author(s):  
Kyung Tae Park ◽  
Chong Soo Lee ◽  
Dong Hyuk Shin

An ultrafine grained structure was obtained in the two grades of a 5083 Al alloy with or without scandium by using equal channel angular pressing and its superplastic behavior was characterized. For the alloy without scandium, low temperature superplasticity was obtained but high strain rate superplasticity was unlikely to occur. By contrast, the alloy containing a small amount of scandium exhibited high strain rate superplasticity. It was found that, in both cases, the strain rate region showing superplasticity was very limited, i.e. one order of magnitude. From the mechanical data, the deformation mechanisms were examined.


2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

Sign in / Sign up

Export Citation Format

Share Document