Grain boundary ensembles due to grain growth in copper with strong recrystallization texture

1998 ◽  
Vol 249 (1-2) ◽  
pp. 71-78 ◽  
Author(s):  
O.V Mishin ◽  
G Gottstein
2020 ◽  
Vol 8 (10) ◽  
pp. 2000412
Author(s):  
Lan Xiao ◽  
Zhengchun Wang ◽  
Tong Wu ◽  
Pingli Qin ◽  
Xueli Yu ◽  
...  

2011 ◽  
Vol 306-307 ◽  
pp. 116-119
Author(s):  
Masahiko Demura ◽  
Ya Xu ◽  
Toshiyuki Hirano

This article presents the texture evolution and the ductility improvement of the cold-rolled foils of boron-free Ni3Al during the recrystallization and the subsequent grain growth. The cold-rolled foils had sharp {110} textures. After the recrystallization at 873K/0.5h, the texture was disintegrated with several texture components. Interestingly, most of them had a single rotation relationship. i.e. 40˚ around <111>. With the progress of the grain growth, however, the texture returned to the sharp, cold-rolled textures. This two-stage texture evolution, called as “Texture memory effect”, was explained assuming a high mobility of the grain boundary with the 40˚<111> rotation relationship. The texture returning was highly effective to improve the ductility of the foils.


1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.


2007 ◽  
Vol 39 (1) ◽  
pp. 25-29 ◽  
Author(s):  
B.B. Panigrahi ◽  
K. Das ◽  
M.M. Godkhindi

This work attempts to evaluate the sintering mechanisms of ball milled nanocrystalline nickel during nonisothermal heating. Samples showed a sintered density of 91.2% (theoretical) and grain growth up to 414 nm at 1273K. The activation energies of 12.4, 32.0 and 51.6 kJ/mol were found for viscous flow, lattice diffusion and grain boundary diffusion mechanisms respectively. Sintering was found to be controlled by interface reactions involving surface and grain boundary diffusions.


1986 ◽  
Vol 2 (2) ◽  
pp. 106-109 ◽  
Author(s):  
W. Przetakiewicz ◽  
K. J. Kurzydłowski ◽  
M. W. Grabski

1999 ◽  
Vol 601 ◽  
Author(s):  
B.-N. Kim ◽  
K. Hiraga

AbstractSuperplastic tensile deformation is simulated in 2 dimensions by incorporating grain boundary diffusion and concurrent grain growth derived from static and dynamic growth mechanisms. The following relationship is found between microstructural changes and deformation behavior for constant stress conditions. Grain boundary diffusion produces an increase in the aspect ratio of the matrix grains during deformation and the increased aspect ratio causes a change in creep rate parameters: the stress exponent is decreased from the initial value of 1.0 for equiaxed grains and the grain size exponent is increased from the initial value of 3.0. Accelerated grain growth is also found by the present simulation.


Sign in / Sign up

Export Citation Format

Share Document