Temporal variability of the seasonal sea-level cycle in the North Sea and Baltic Sea in relation to climate variability

1999 ◽  
Vol 20 (2-3) ◽  
pp. 173-203 ◽  
Author(s):  
H.-P Plag ◽  
M.N Tsimplis
2018 ◽  
Vol 9 (1) ◽  
pp. 69-90 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.


2017 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual time scale. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea-level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea-level that remains stable through the 20th century, in contrast to the much more variable link between sea-level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level-pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % sea-level of the inter-annual sea-level variance in winter and up to 79 % in summer. Sea-level in the eastern part of the Gulf of Finland is the most sensitive area to the BANOS-index in wintertime, whereas Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS-index. These mechanisms include the inverse barometer effect (IBE), fresh water balance, net energy flux and wind-induced water transport. We found that the most important mechanisms are the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea-level to the SLP gradients over this region, at seasonal time scales the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS-index in wintertime and 34% in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea-level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated to the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime. Keywords: off-shore sea-level, atmospheric factors, the Baltic Sea, the North Sea, statistical analysis.


2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


Sign in / Sign up

Export Citation Format

Share Document