Review of “Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea” by Sitar Karabil, Eduardo Zorita, and Birgit Hünicke, submitted for publication in Earth System Dynamics

2017 ◽  
Author(s):  
Anonymous
2018 ◽  
Vol 9 (1) ◽  
pp. 69-90 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.


2017 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual time scale. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea-level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea-level that remains stable through the 20th century, in contrast to the much more variable link between sea-level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level-pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % sea-level of the inter-annual sea-level variance in winter and up to 79 % in summer. Sea-level in the eastern part of the Gulf of Finland is the most sensitive area to the BANOS-index in wintertime, whereas Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS-index. These mechanisms include the inverse barometer effect (IBE), fresh water balance, net energy flux and wind-induced water transport. We found that the most important mechanisms are the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea-level to the SLP gradients over this region, at seasonal time scales the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS-index in wintertime and 34% in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea-level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated to the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime. Keywords: off-shore sea-level, atmospheric factors, the Baltic Sea, the North Sea, statistical analysis.


2021 ◽  
Author(s):  
H. E. Markus Meier ◽  
Madline Kniebusch ◽  
Christian Dieterich ◽  
Matthias Gröger ◽  
Eduardo Zorita ◽  
...  

Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in climate of the Baltic Sea region is summarized and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focusses on the atmosphere, land, cryosphere, ocean, sediments and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in paleo-, historical and future regional climate research, we find that the main conclusions from earlier assessments remain still valid. However, new long-term, homogenous observational records, e.g. for Scandinavian glacier inventories, sea-level driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution and new scenario simulations with improved models, e.g. for glaciers, lake ice and marine food web, have become available. In many cases, uncertainties can now be better estimated than before, because more models can be included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth System have been studied and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication and climate change. New data sets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal time scales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first paleoclimate simulations regionalized for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA) and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics is dominated by tides, the Baltic Sea is characterized by brackish water, a perennial vertical stratification in the southern sub-basins and a seasonal sea ice cover in the northern sub-basins.


2014 ◽  
Vol 14 (15) ◽  
pp. 21943-21974 ◽  
Author(s):  
J. E. Jonson ◽  
J. P. Jalkanen ◽  
L. Johansson ◽  
M. Gauss ◽  
H. A. C. Denier van der Gon

Abstract. Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased, although recently sulphur emissions, and subsequently particle emissions, have decreased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (Sulphur Emission Control Areas). The maximum allowed sulphur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulphur directive. In the SECAs the maximum fuel content of sulphur is currently 1% (the global average is about 2.4%). This will be reduced to 0.1% from 2015, following the new IMO rules (International Maritime Organisation). In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLL) have been calculated by comparing model calculations with and without ship emissions in the two sea areas. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of stricter controls on sulphur emissions from mid 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with present emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter emission control on sulphur show a general decrease in calculated particle concentration. At the same time, however, an increase in ship activity has resulted in higher emissions and subsequently air concentrations, in particular of NOx, especially in and around several major ports. Additional model calculations have been made with land based and ship emissions representative of year 2030. Following a decrease in emissions, air quality is expected to improve, and depositions to be reduced. Particles from shipping are expected to decrease as a result of emission controls in the SECAs. Further controls of NOx emissions from shipping are not decided, and calculations are presented with and without such controls.


2019 ◽  
Vol 6 (9) ◽  
pp. 190886 ◽  
Author(s):  
Aurora García-Berro ◽  
Johanna Yliportimo ◽  
Kai Lindström ◽  
Charlotta Kvarnemo

The operational sex ratio (OSR, ready-to-mate males to females) is a key factor determining mating competition. A shortage of a resource essential for reproduction of one sex can affect OSR and lead to competition within the opposite sex for resource-holding mates. In the sand goby ( Pomatoschistus minutus ), a fish with paternal care, male readiness to mate depends on acquiring a nest-site, whereas food abundance primarily impacts female egg production. Comparing body condition and gonadal investment of fish from two populations with different availability in resources (Baltic Sea: few nest-sites, more food; North Sea: many nest-sites, less food), we predicted females carrying more mature eggs in the Baltic Sea than in the North Sea. As predicted, ovaries were larger in Baltic Sea females, and so was the liver (storage of energy reserves and vitellogenic compounds) for both sexes, but particularly for females. More females were judged (based on roundness scores) to be ready to spawn in the Baltic Sea. Together with a nest colonization experiment confirming a previously documented difference between the two areas in nest-site availability, these results indicate a more female-biased OSR in the Baltic Sea population, compared to the North Sea, and generates a prediction that female–female competition for mating opportunities is stronger in the Baltic population. To our knowledge, this is the first time that female reproductive investment is discussed in relation to OSR using field data.


Sign in / Sign up

Export Citation Format

Share Document