Comparison of in vitro and in vivo systems for propagation of rift valley fever virus from clinical specimens

1989 ◽  
Vol 140 ◽  
pp. 129-138 ◽  
Author(s):  
G.W. Anderson ◽  
J.-F. Saluzzo ◽  
T.G. Ksiazek ◽  
J.F. Smith ◽  
W. Ennis ◽  
...  
2015 ◽  
Vol 89 (17) ◽  
pp. 9124-9127 ◽  
Author(s):  
N. Oreshkova ◽  
L. Spel ◽  
R. P. M. Vloet ◽  
P. J. Wichgers Schreur ◽  
R. J. M. Moormann ◽  
...  

Replicon particles of Rift Valley fever virus, referred to as nonspreading Rift Valley fever virus (NSR), are intrinsically safe and highly immunogenic. Here, we demonstrate that NSR-infected human dendritic cells can activate CD8+T cellsin vitroand that prophylactic and therapeutic vaccinations of mice with NSR encoding a tumor-associated CD8 peptide can control the outgrowth of lymphoma cellsin vivo. These results suggest that the NSR system holds promise for cancer immunotherapy.


2019 ◽  
Vol 15 (10) ◽  
pp. 2286-2294 ◽  
Author(s):  
Jian Ma ◽  
Ruifeng Chen ◽  
Weijin Huang ◽  
Jianhui Nie ◽  
Qiang Liu ◽  
...  

2016 ◽  
Vol 12 (5) ◽  
pp. 1185-1192 ◽  
Author(s):  
Belén Borrego ◽  
Gema Lorenzo ◽  
Josué D. Mota-Morales ◽  
Horacio Almanza-Reyes ◽  
Francisco Mateos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Safini ◽  
Z. Bamouh ◽  
J. Hamdi ◽  
M. Jazouli ◽  
K. O. Tadlaoui ◽  
...  

AbstractViral interference is a common occurrence that has been reported in cell culture in many cases. In the present study, viral interference between two capripox viruses (sheeppox SPPV and lumpy skin disease virus LSDV in cattle) with Rift Valley fever virus (RVFV) was investigated in vitro and in their natural hosts, sheep and cattle. A combination of SPPV/RVFV and LSDV/RVFV was used to co-infect susceptible cells and animals to detect potential competition. In-vitro interference was evaluated by estimating viral infectivity and copies of viral RNA by a qPCR during three serial passages in cell cultures, whereas in-vivo interference was assessed through antibody responses to vaccination. When lamb testis primary cells were infected with the mixture of capripox and RVFV, the replication of both SPPV and LSDV was inhibited by RVFV. In animals, SPPV/RVFV or LSDV/RVFV combinations inhibited the replication SPPV and LSDV and the antibody response following vaccination. The combined SPPV/RVFV did not protect sheep after challenging with the virulent strain of SPPV and the LSDV/RVFV did not induce interferon Gamma to LSDV, while immunological response to RVFV remain unaffected. Our goal was to assess this interference response to RVFV/capripoxviruses’ coinfection in order to develop effective combined live-attenuated vaccines as a control strategy for RVF and SPP/LSD diseases. Our findings indicated that this approach was not suitable for developing a combined SPPV/LSDV/RVFV vaccine candidate because of interference of replication and the immune response among these viruses.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 82 ◽  
Author(s):  
Elena López-Gil ◽  
Sandra Moreno ◽  
Javier Ortego ◽  
Belén Borrego ◽  
Gema Lorenzo ◽  
...  

In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.


2009 ◽  
Vol 137 (9) ◽  
pp. 1309-1318 ◽  
Author(s):  
M. T. HEISE ◽  
A. WHITMORE ◽  
J. THOMPSON ◽  
M. PARSONS ◽  
A. A. GROBBELAAR ◽  
...  

SUMMARYRift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus (genusPhlebovirus) associated with severe disease in livestock and fatal encephalitis or haemorrhagic fever in a proportion of infected humans. Although live attenuated and inactivated vaccines have been used in livestock, and on a limited scale in humans, there is a need for improved anti-RVFV vaccines. Towards this goal, Sindbis virus replicon vectors expressing the RVFV Gn and Gc glycoproteins, as well as the non-structural nsM protein, were constructed and evaluated for their ability to induce protective immune responses against RVFV. These replicon vectors were shown to produce the RVFV glycoproteins to high levelsin vitroand to induce systemic anti-RVFV antibody responses in immunized mice, as determined by RVFV-specific ELISA, fluorescent antibody tests, and demonstration of a neutralizing antibody response. Replicon vaccination also provided 100% protection against lethal RVFV challenge by either the intraperitoneal or intranasal route. Furthermore, preliminary results indicate that the replicon vectors elicit RVFV-specific neutralizing antibody responses in vaccinated sheep. These results suggest that alphavirus-based replicon vectors can induce protective immunity against RVFV, and that this approach merits further investigation into its potential utility as a RVFV vaccine.


Author(s):  
Belén Borrego ◽  
Sandra Moreno ◽  
Nuria de la Losa ◽  
Friedemann Weber ◽  
Alejandro Brun

Rift valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an IFN-competent cell line as well as the production of IFN-β did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results unveil a new RVFV virulence marker highlighting the multiple ways of NSs protein to modulate viral infectivity.


Sign in / Sign up

Export Citation Format

Share Document