scholarly journals The Quality of Sample Size Calculation (SSC) Reporting in Cancer Clinical Trials

2012 ◽  
Vol 23 ◽  
pp. ix450
Author(s):  
G.M. Bariani ◽  
A.C.R.C. Ferrari ◽  
P.M. Hoff ◽  
R. Arai ◽  
M. Precivale ◽  
...  
2001 ◽  
Vol 95 (5) ◽  
pp. 1068-1073 ◽  
Author(s):  
Hwee Leng Pua ◽  
Jerrold Lerman ◽  
Mark W. Crawford ◽  
James G. Wright

Background The authors evaluated the quality of clinical trials published in four anesthesia journals during the 20-yr period from 1981-2000. Methods Trials published in four major anesthesia journals during the periods 1981-1985, 1991-1995, and the first 6 months of 2000 were grouped according to journal and year. Using random number tables, four trials were selected from all of the eligible clinical trials in each journal in each year for the periods 1981-1985 and 1991-1995, and five trials were selected from all of the trials in each journal in the first 6 months of 2000. Methods and results sections from the 160 trials from 1981-1985 and 1991-1995 were randomly ordered and distributed to three of the authors for blinded review of the quality of the study design according to 10 predetermined criteria (weighted equally, maximum score of 10): informed consent and ethics approval, eligibility criteria, sample size calculation, random allocation, method of randomization, blind assessment of outcome, adverse outcomes, statistical analysis, type I error, and type II error. After these trials were evaluated, 20 trials from the first 6 months of 2000 were randomly ordered, distributed, and evaluated as described. Results The mean (+/- SD) analysis scores pooled for the four journals increased from 5.5 +/- 1.4 in 1981-1985 to 7.0 +/- 1.1 in 1991-1995 (P < 0.00001) and to 7.8 +/- 1.5 in 2000. For 7 of the 10 criteria, the percentage of trials from the four journals that fulfilled the criteria increased significantly between 1981-1985 and 1991-1995. During the 20-yr period, the reporting of sample size calculation and method of randomization increased threefold to fourfold, whereas the frequency of type I statistical errors remained unchanged. Conclusion Although the quality of clinical trials in four major anesthesia journals has increased steadily during the past two decades, specific areas of trial methodology require further attention.


Author(s):  
Luke Farrow ◽  
William T. Gardner ◽  
Andrew D. Ablett ◽  
Vladislav Kutuzov ◽  
Alan Johnstone

Abstract Introduction The recent past has seen a significant increase in the number of trauma and orthopaedic randomised clinical trials published in “the big five” general medical journals. The quality of this research has, however, not yet been established. Methods We therefore set out to critically appraise the quality of available literature over a 10-year period (April 2010–April 2020) through a systematic search of these 5 high-impact general medical journals (JAMA, NEJM, BMJ, Lancet and Annals). A standardised data extraction proforma was utilised to gather information regarding: trial design, sample size calculation, results, study quality and pragmatism. Quality assessment was performed using the Cochrane Risk of Bias 2 tool and the modified Delphi list. Study pragmatism was assessed using the PRECIS-2 tool. Results A total of 25 studies were eligible for inclusion. Over half of the included trials did not meet their sample size calculation for the primary outcome, with a similar proportion of these studies at risk of type II error for their non-significant results. There was a high degree of pragmatism according to PRECIS-2. Non-significant studies had greater pragmatism that those with statistically significant results (p < 0.001). Only 56% studies provided adequate justification for the minimum clinically important difference (MCID) in the population assessed. Overall, very few studies were deemed high quality/low risk of bias. Conclusions These findings highlight that there are some important methodological concerns present within the current evidence base of RCTs published in high-impact medical journals. Potential strategies that may improve future trial design are highlighted. Level of evidence Level 1.


1994 ◽  
Vol 13 (8) ◽  
pp. 859-870 ◽  
Author(s):  
Robert P. McMahon ◽  
Michael Proschan ◽  
Nancy L. Geller ◽  
Peter H. Stone ◽  
George Sopko

1998 ◽  
Vol 26 (2) ◽  
pp. 57-65 ◽  
Author(s):  
R Kay

If a trial is to be well designed, and the conclusions drawn from it valid, a thorough understanding of the benefits and pitfalls of basic statistical principles is required. When setting up a trial, appropriate sample-size calculation is vital. If initial calculations are inaccurate, trial results will be unreliable. The principle of intent-to-treat in comparative trials is examined. Randomization as a method of selecting patients to treatment is essential to ensure that the treatment groups are equalized in terms of avoiding biased allocation in the mix of patients within groups. Once trial results are available the correct calculation and interpretation of the P-value is important. Its limitations are examined, and the use of the confidence interval to help draw valid conclusions regarding the clinical value of treatments is explored.


2020 ◽  
Author(s):  
Santam Chakraborty ◽  
Indranil Mallick ◽  
Hung N Luu ◽  
Tapesh Bhattacharyya ◽  
Arunsingh Moses ◽  
...  

Abstract Introduction The current study was aimed at quantifying the disparity in geographic access to cancer clinical trials in India. Methods We collated data of cancer clinical trials from the clinical trial registry of India (CTRI) and data on state-wise cancer incidence from the Global Burden of Disease Study. The total sample size for each clinical trial was divided by the trial duration to get the sample size per year. This was then divided by the number of states in which accrual was planned to get the sample size per year per state (SSY). For interventional trials investigating a therapy, the SSY was divided by the number of incident cancers in the state to get the SSY per 1,000 incident cancer cases. The SSY data was then mapped to visualise the geographical disparity.Results We identified 181 ongoing studies, of whom 132 were interventional studies. There was a substantial inter-state disparity - with a median SSY of 1.55 per 1000 incident cancer cases (range 0.00 - 296.81 per 1,000 incident cases) for therapeutic interventional studies. Disparities were starker when cancer site-wise SSY was considered. Even in the state with the highest SSY, only 29.7 % of the newly diagnosed cancer cases have an available slot in a therapeutic cancer clinical trial. Disparities in access were also apparent between academic (range: 0.21 - 226.60) and industry-sponsored trials (range: 0.17 - 70.21).Conclusion There are significant geographic disparities in access to cancer clinical trials in India. Future investigations should evaluate the reasons and mitigation approaches for such disparities.


Sign in / Sign up

Export Citation Format

Share Document