Finite element analysis of the orthogonal metal cutting process

2000 ◽  
Vol 105 (1-2) ◽  
pp. 95-109 ◽  
Author(s):  
Chandrakanth Shet ◽  
Xiaomin Deng
Author(s):  
Norikazu Suzuki ◽  
Tomoki Nakanomiya ◽  
Eiji Shamoto

Abstract This paper presents a new approach to predict chatter stability in cutting considering process damping. Traditional chatter stability analysis methods enable to predict stable or unstable conditions. Under unstable conditions, the chatter vibration can increase theoretically infinitely. However, chatter vibration is damped at a certain amplitude in real process due to process damping, i.e., the cutting process is stabilized by means of tool flank face contact to the machined surface. In order to consider the influence of the process damping, a simple process damping force model is introduced. The process damping force is assumed to be proportional to the structural displacement. The process damping coefficient is a function of the vibration amplitude and the wavelength. In order to identify the coefficients, a series of finite element analysis is conducted in the present study. Identified coefficients are introduced into the conventional zero-order-solution in frequency domain. The proposed model calculates chatter stability limit assuming process damping with finite amplitude. Hence, this analysis enables to estimate the amplitude-dependent quasi-stable conditions. Analytical results for thee face turning operation demonstrated influence of process damping effect on resultant vibration amplitude quantitatively.


2012 ◽  
Vol 192 ◽  
pp. 14-18
Author(s):  
Ming Cong ◽  
Jian Song

In this paper, the turning process of 45# steel was simulated and analyzed based on the metal cutting finite element analysis software DEFORM-3D. The analysis result of cutting force was gained. However, due to some reasons of the software itself, there is noise data in analysis results. Thus, it’s needed to filter the data to extract useful information. The selected short-duration and steady-state cutting force data was processed with the use of six-sigma rule through mathematical statistics analysis. As a result, some bad data were rejected. Noise data was filtered out via wavelet analysis and the processed function curve of cutting force that changes with time during the whole cutting course was gained.


2005 ◽  
Vol 25 (14-15) ◽  
pp. 2152-2168 ◽  
Author(s):  
Pradip Majumdar ◽  
R. Jayaramachandran ◽  
S. Ganesan

2013 ◽  
Vol 631-632 ◽  
pp. 686-690
Author(s):  
Yi Li Shen

With the rapid penetration of information technology in various fields, CAD/CAM/CAE technology has been widely used to fundamentally change the traditional design, production, organizational models, it also has a very important significance to promote the technological transformation of existing enterprises, bring the whole structural change of the night, develop the new technologies and the promotion of economic growth. The paper uses the blades of steam turbine as an example, combined with the finite element analysis method to study the whole cutting process, the whole process was simulated and the results of error were had analysis and optimization.


Sign in / Sign up

Export Citation Format

Share Document