Development of microstructure and texture during high temperature equal channel angular extrusion of aluminium

2001 ◽  
Vol 117 (1-2) ◽  
pp. 169-177 ◽  
Author(s):  
Uday Chakkingal ◽  
P.F. Thomson
2007 ◽  
Vol 26-28 ◽  
pp. 385-388 ◽  
Author(s):  
Zhi Guo Fan ◽  
Chao Ying Xie

The initial coarse grains of Ti-50.9at%Ni alloy were refined into submicron grains, small than 0.5 um in size, after eight passes Equal Channel Angular Extrusion (ECAE) at 500°C. Optical microscopy and high temperature DSC tests were applied to investigate recrystallization behavior. It is found that the recrystallization start (Rs) and recrystallization peak (Rp) temperatures of Ti-50.9at%Ni specimens processed by eight passes ECAE are lower than that of the samples processed by one pass ECAE. Ti-50.9at%Ni specimens processed by eight passes ECAE with submicron grains are characterized by higher stability and need less energy to finish recrystallization process.


2004 ◽  
Vol 52 (7) ◽  
pp. 1885-1898 ◽  
Author(s):  
László S. Tóth ◽  
Roxane Arruffat Massion ◽  
Lionel Germain ◽  
Seung C. Baik ◽  
Satyam Suwas

Author(s):  
Abhinav Srivastava ◽  
Matthew W. Vaughan ◽  
Bilal Mansoor ◽  
Wahaz Nasim ◽  
Robert Barber ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 015013 ◽  
Author(s):  
Venkata Vasiraju ◽  
Lance Brockway ◽  
Shreyas Balachandran ◽  
Arun Srinivasa ◽  
Sreeram Vaddiraju

2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


Sign in / Sign up

Export Citation Format

Share Document