A fuzzy logic based expert system for machinability data-on-demand on the Internet

2002 ◽  
Vol 124 (1-2) ◽  
pp. 57-66 ◽  
Author(s):  
S.V Wong ◽  
A.M.S Hamouda
2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raid Daoud ◽  
Yaareb Al-Khashab

The internet service is provided by a given number of servers located in the main node of internet service provider (ISP). In some cases; the overload problem was occurred because a demand on a given website goes to very high level. In this paper, a fuzzy logic control (FLC) has proposed to distribute the load into the internet servers by a smart and flexible manner. Three effected parameters are tacked into account as input for FLC: link capacity which has three linguistic variables with Gaussian membership function (MF): (small, medium and big), traffic density with linguistic variables (low, normal and high) and channel latency with linguistic variables (empty, half and full); with one output which is the share server status (single, simple and share). The proposed work has been simulated by using MATLAB 2016a, by building a structure in the Fuzzy toolbox. The results were fixed by two manners: the graphical curves and the numerical tables, the surface response was smoothly changed and translates the well-fixed control system. The numerical results of the control system satisfy the idea of the smart rout for the incoming traffics from the users to internet servers. So, the response of the proposed system for the share of server ratio is 0.122, when the input parameter in the smallest levels; and the ratio is 0.879 when the input parameters are in highest level. The smart work and flexible use for the FLC is the main success solution for most of today systems control.


2014 ◽  
Vol 59 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Norbert Skoczylas

Abstract The Author endeavored to consult some of the Polish experts who deal with assessing and preventing outburst hazards as to their knowledge and experience. On the basis of this knowledge, an expert system, based on fuzzy logic, was created. The system allows automatic assessment of outburst hazard. The work was completed in two stages. The first stage involved researching relevant sources and rules concerning outburst hazard, and, subsequently, determining a number of parameters measured or observed in the mining industry that are potentially connected with the outburst phenomenon and can be useful when estimating outburst hazard. Then, the Author contacted selected experts who are actively involved in preventing outburst hazard, both in the industry and science field. The experts were anonymously surveyed, which made it possible to select the parameters which are the most essential in assessing outburst hazard. The second stage involved gaining knowledge from the experts by means of a questionnaire-interview. Subjective opinions on estimating outburst hazard on the basis of the parameters selected during the first stage were then systematized using the structures typical of the expert system based on fuzzy logic.


2021 ◽  
Vol 16 ◽  
pp. 155892502198897
Author(s):  
Joy Sarkar ◽  
Md Abdullah Al Faruque ◽  
Moni Sankar Mondal

The main purpose of this study is to predict and develop a model for forecasting the Seam Strength (SS) of denim garments with respect to the thread linear density (tex) and Stitches Per Inch (SPI) by using a Fuzzy Logic Expert System (FLES). The seam strength is an important factor for the serviceability of any garments. As seams bound the fabric pieces together in a garment, the seams must have sufficient strength to execute this property even in the unexpected severe conditions where the garments are subjected to loads or any additional internal or external forces. Sewing thread linear density and number of stitches in a unit length of the seam are the two of the most important factors that affect the seam strength of any garments. But the relationship among these two specific variables and the seam strength is complex and non-linear. As a result, a fuzzy logic based model has been developed to demonstrate the relationship among these parameters and the developed model has been validated by the experimental trial. The coefficient of determination ( R2) was found to be 0.98. The mean relative error also lies withing acceptable limit. The results have suggested a very good performance of the model in the case of the prediction of the seam strength of the denim garments.


1994 ◽  
Vol 33 (05) ◽  
pp. 522-529 ◽  
Author(s):  
M. Fathi-Torbaghan ◽  
D. Meyer

Abstract:Even today, the diagnosis of acute abdominal pain represents a serious clinical problem. The medical knowledge in this field is characterized by uncertainty, imprecision and vagueness. This situation lends itself especially to be solved by the application of fuzzy logic. A fuzzy logic-based expert system for diagnostic decision support is presented (MEDUSA). The representation and application of uncertain and imprecise knowledge is realized by fuzzy sets and fuzzy relations. The hybrid concept of the system enables the integration of rulebased, heuristic and casebased reasoning on the basis of imprecise information. The central idea of the integration is to use casebased reasoning for the management of special cases, and rulebased reasoning for the representation of normal cases. The heuristic principle is ideally suited for making uncertain, hypothetical inferences on the basis of fuzzy data and fuzzy relations.


2005 ◽  
Vol 5 (6) ◽  
pp. 821-832 ◽  
Author(s):  
A. Zischg ◽  
S. Fuchs ◽  
M. Keiler ◽  
G. Meißl

Abstract. The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.


Sign in / Sign up

Export Citation Format

Share Document