Analysis and finite element simulation of the tube bulge hydroforming process

2002 ◽  
Vol 125-126 ◽  
pp. 821-825 ◽  
Author(s):  
Yeong-Maw Hwang ◽  
Yi-Kai Lin
2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


2008 ◽  
Vol 9 (1) ◽  
pp. 178-182 ◽  
Author(s):  
S.A. Zahedi ◽  
A. Shamsi ◽  
A. Gorji ◽  
S.J. Hosseinipo ◽  
M. Bakhshi-Jo

2011 ◽  
Vol 110-116 ◽  
pp. 1477-1482 ◽  
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of load path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. The pressure path was obtained by using finite element simulation and its validation with experiments. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that if pressure reaches to maximum faster, bulge value and thinning of the part will be more and wrinkling value will be less.


Sign in / Sign up

Export Citation Format

Share Document