Vorticity analysis of transient shallow water eddy fields at the river plume front of the River Elbe in the German Bight

1998 ◽  
Vol 14 (1-2) ◽  
pp. 117-133 ◽  
Author(s):  
Joachim W. Dippner
2015 ◽  
Vol 58 (11) ◽  
pp. 2059-2066 ◽  
Author(s):  
Peng Bai ◽  
YanZhen Gu ◽  
Lin Luo ◽  
WanLei Zhang ◽  
KaiGuo Fan
Keyword(s):  

1998 ◽  
Vol 28 (7) ◽  
pp. 1481-1495 ◽  
Author(s):  
James O’Donnell ◽  
George O. Marmorino ◽  
Clifford L. Trump
Keyword(s):  

1986 ◽  
Vol 39 (3) ◽  
pp. 91-112 ◽  
Author(s):  
Hjalmar Franz ◽  
Holger Klein

2017 ◽  
Vol 17 (18) ◽  
pp. 10997-11023 ◽  
Author(s):  
André Seyler ◽  
Folkard Wittrock ◽  
Lisa Kattner ◽  
Barbara Mathieu-Üffing ◽  
Enno Peters ◽  
...  

Abstract. A 3-year time series of ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane (at a distance of 6–7 km) into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios determined from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in situ measurements showing good correlation on average but also a systematic underestimation by the MAX-DOAS O4 scaling approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 to 0.1 %) on 1 January 2015 in the North Sea Emission Control Area (ECA), a significant reduction in SO2 levels is observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of 8, while for NO2 in the whole time series from 2013 to 2016, no significant change in emissions was observed. More than 2000 individual ship emission plumes have been identified in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014 and decreasing significantly, presumably due to lower fuel sulfur content, in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from the open North Sea and coast excluding data with mixed air mass origin, relative contributions of ships and land-based sources to air pollution levels in the German Bight have been estimated to be around 40 % : 60 % for NO2 as well as SO2 in 2013/2014, dropping to 14 % : 86 % for SO2 in 2015/2016.


Author(s):  
Elizabeth Brasseale ◽  
Parker MacCready

AbstractThe inflow to an estuary originates on the shelf. It flushes the estuary and can bring in nutrients, heat, salt, and hypoxic water, having consequences for estuarine ecosystems and fjordic glacial melt. However, the source of estuarine inflow has only been explored in simple models that do not resolve interactions between inflow and outflow outside of the estuarine channel. This study addressed the estuary inflow problem using variations on a three-dimensional primitive equation model of an idealized estuarine channel next to a sloping, unstratified shelf with mixing provided by a single frequency, 12-hour tide. Inflow was identified using particle tracking, momentum budgets, and Total Exchange Flow. Inflow sources were found in shelf water downstream of the estuary, river plume water, and shelf water upstream of the estuary. Downstream is defined here with respect to the direction of coastal trapped wave propagation, which is to the right for an observer looking seaward from the estuary mouth in the northern hemisphere. Downstream of the estuary and offshore of the plume, the dynamics were quasi-geostrophic, consistent with previous simple models. The effect of this inflowing current on the geometry of the river plume front was found to be small. Novel sources of inflow were identified which originated from within the plume and upstream of the estuary.


Sign in / Sign up

Export Citation Format

Share Document